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ON UNIT-ZERO BOOLEAN REPRESENTATIONS
OF OPERATIONS AND RELATIONS*

BY B. A. BERNSTEIN

1. Introduction. Consider an algebra (K, +, X), such as ordi-
nary real algebra, in which there are two elements “0” and “1”
having the properties that, for any element @,

(1) a+0=0+¢=a,0a =1¢ = a.
Let
(xl, x2,~-,xm;al,a2,---,am)

denote a unit-zero function with respect to the sequence of m ele-

ments, a1, -+ - -, &n of K, that is, a function f(xi, %2, -+ +, Xm)
of m elements x1, %y, + - -, Xm such that f=1 or 0, according as
the equalities, x;=a;, ({=1,2, - - -, m), all hold or do not all

hold. Accordingly, (x; @) will denote a wunit-zero function with
respect to a, that is, a function f(x) such that f(x) =1 or 0, ac-
cording as x =a or x#a. Then the following propositions (2)-(4)
evidently hold:

(2) (w1, 22, =+ Tm; @1,y Bay * * + 5 Q) = (215 01) (%25 82) * * + (X ) ;
3) a(xy, %2, * * 5 Xm; G1, A2, * * , @) = a OF 0,
according as x;=a;, (41=1,2, - - - ,m), all hold or do not all hold;
(4) a(xy, xa, * * +, X3 @1, A2, * * * , )

4 b(xy, ®9y -+ -, X b1, gy - -+, D) = @, or b, or 0,

according as x;=a; all hold, or x; =0, all hold, or neither x;=aqa;
all hold nor x;=b; all hold, (:=1,2, - - ., m; a;b; for some 7).
In a previous papert propositions (1)-(4) were made the basis
of a method of obtaining arithmetic representations of arbitrary
operations and relations in a finite class of elements. Since

* Presented to the Society, April 11, 1931.

t B. A. Bernstein and N. Debely, 4 practical method for the modular repre-
sentation of finite operations and relations, this Bulletin, vol. 38 (1932), pp.
110-114.
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propositions (1)—(4) also hold when the symbols belong to
Boolean algebra, the question naturally arises: To what extent
can unit-zero functions be used analogously to obtain Boolean
representations of arbitrary operations and relations? The ob-
ject of the present paper is to answer this question.

2. Determination of Boolean Unit-Zero Algebras. The possi-
bility of representing arbitrary operations and relations by unit-
zero functions of an algebra hinges on the existence in this alge-
bra of a unit-zero function for every sequence of m of its ele-
ments. Let us call an algebra which has a unit-zero function for
every sequence of m of its elements a unit-zero algebra. 1 pro-
ceed first to determine all Boolean unit-zero algebras.

This determination is made easy by noting at the outset that
a unit-zero Boolean function must satisfy proposition (2) above
and also that it must be single-valued. We therefore need to
look only for Boolean unit-zero functions f(x) of a single vari-
able x of the form*

(3) (x;0) = (1; )2 + (0; )’

From (5) we see, by putting ¢ =0, 1, that in a Boolean algebra
of two elements, « is the unit-zero function of x with respect to 1,
and x’ is the unit-zero function of x with respect to 0; in sym-
bols,

(6) (2;1) = x, (x;0) = «.

We have, then, that a two-element Boolean algebra is a unit-zero
algebra, the unit-zero functions of one variable x being given by (6).

By (2) and (6), all the unit-zero functions of a two-element
Boolean algebra can be readily written down. Thus, the unit-

zero functions of two variables x, ¥ are given by
) (v, 9;1,1) = xy, (x,;1,0) =y,
(2,9;0,1) = a’y, (x,9;0,0) = a’y.

In general, the unit-zero functions of m variables are the 2™ con-
stituents in the normal development of 1 with respect to the m vari-
ables.

* The usual Boolean notations are employed: a+b, ab, a’, 0, 1 are respec-
tively the sum of @ and b, the product of a and b, the negative of a, the zero ele-
ment, the whole.
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Let us now consider a Boolean algebra 4 of more than two
elements. 4 must have an element e#0, 1. Suppose, first, that
A has a unit-zero function f(x), of form (5), with respect to e.
Then

(M) fle) =1, f(0) =0, f(1) =0, (e#0,1).

But (i) is inconsistent with (5). Hence, our algebra A has no
unit-zero function with respect to a sequence containing the ele-
ment e.

Suppose, next, that the algebra 4 has a unit-zero function
f(x), of form (5) with respect to 0. Then

(i) f0) =1, f(1) =0, f(e) = 0, (e#0,1).
Hence, by (5),
(iii) f(x) = &, f(e) = 0, (e £ 0, 1).

But equations (iii) are inconsistent. Hence, our algebra A has
no unit-zero function with respect to a sequence containing the ele-
ment 0.

Similarly, our algebra A has no unit-zero function with respect
to a sequence containing the element 1. Hence, a Boolean algebra
of more than two elements has no unit-zero functions at all.

Our main result is, then, the following theorem.

THEOREM A. The only Boolean unit-zero algebra is a two-ele-
ment Boolean algebra.

3. Dual Considerations. By the Principle of Duality in
Boolean algebras each of the foregoing propositions about unit-
zero Boolean functions has a dual proposition corresponding to
it. To state these duals, let me use the notion of zero-unit func-
tion (to be distinguished from wumnit-zero function). By a zero-
unit function of xi, X, -+ -+, Xm With respect to the sequence
ai, G, ¢+ +, @m, symbolized by

[xly X255 Xm; G1y A2y ° * ° am]’

let us mean a function f(xi1, %2, - - +, ¥=) such that f=0 or 1,
according as x;=a;, (¢=1,2, - - - ,m), all hold or do not all hold.
The duals of (2), (3), and (4) are, then, respectively (2'), (3'),
and (4’) following:
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(2" [wy, @9, ¢, Xm; @1, A2, v -y Gm)
= [wr; a1] + [x2; 0] 4 - - + [wm; @l

(3) a4+ (w1, %2, -+, ¥m; a1, a2, -, @] = aor1,
according asx;=a;, (1=1,2, - - -, m), all hold or do not all hold;
(4/) {d + [xl) Xoy, * * 0y Xm; @y @y ¢ ¢ 0, (Zm]}

< {b 4 [wy, 2, - -+ Xy by, by, o oo, b)) = @, or b, or 1,
according as x; =a; all hold, or x;=0; all hold, or neither x;=a;
all hold nor x;=b; all hold, (=1, 2, - - -, m; a;5b; for some 7).

The dual of Theorem A is

THEOREM A’. The only zero-unit Boolean algebra is a two-ele-
ment Boolean algebra.

For a two-element Boolean algebra we have, further:
(6" [x; 0] = =, [€;1] = «';
(7 [2,5;0,0] = 243, [x,9;0,1] = 2+ ¥,
[x, y;1,0] = &' + vy, [2, v; 1, 1] = &’ + 4.

In general, the zero-unit functions of m variables are the 2™ fac-
tor-constituents in the dual normal development of 0 with respect
to the m variables.

Propositions (2/)—(7’) will be used below in the representation
of operations that do not satisfy the condition of closure.

4. Representations. It is now clear to what extent we can apply
unit-zero Boolean functions in the representation of arbitrary
operations and relations. From Theorem A, we have

THEOREM B. 4 wunit-zero Boolean representation of arbitrary
operations and relations is possible when and only when the class
consists of two elements.

For a two-element class K, the theory of Boolean representa-
tion follows from propositions (2)—(7) and their duals. If we de-
note the two K-elements by the Boolean symbols 0, 1, the repre-
sentations of all operations O and relations R in K are covered
by the cases 1-3 following.

Case 1. O an m-ary operation satisfying the condition of
closure. There is a K-element, 0 or 1, for every sequence

e, €, * + +,entaken from K. Let the sequences to which 1 corre-
sponds be
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(l) a1, 012, * * ° , Oim; g1, Qggy * * * § Qom; * * * 5 Olkly, Oy * * ¢y Olkm.

The representation of O is the Boolean function

k
)] Z(xl; Xoy vy Emy Qi1 Oz, * ¢ 0, Oim) »
=1
CASE 2. O an m-ary operation not satisfying the closure condi-
tion. There are sequences in K to which no K-elements corre-
spond. Let these sequences be

(i)  Bi1, Biz, * 5 Bim; Bary B2z, * * + 5 Bams + ;5 Br1, Brzy  + 7y Bim-

Consider the operation O’ obtained from O by assigning a K-
element, 0 for convenience, to each of the sequences (ii). Let
@ (x1, %2, - + +, Xm), Obtained as in Case 1, be the representation
of O’. Then the representation of O is the function

k
(9) ¢(x1; X2, " 0 0, xm) + ZO/[xly Xo, 0y Xmj Bir, Bigy - - - :Bim]7
=1
where a/b means the unique K-element ¢ satisfying the condi-
tion bg=a.*
CASE 3. R an m-adic relation. Let the sequences which do not
satisfy R be

(1) vi1, Yiz, © 5 Yims Yo, Y22, © c C, Yemi C t 5 VEL YR, s VEme

Then the representation of R is the Boolean equation
k

(10) D@y, @y ety Ty Yin, Viny -5 Yim) = 0.1
i=1

Of course, by the Duality Principle, the theory of representa-
tion can be stated primarily in terms of zero-unit functions in-
stead of unit-zero functions.

5. Illustrations. The following illustrations, one for each of the
above three cases, will make the theory of representation quite
clear.

a. Let O be the operation defined by

* For a two-element Boolean algebra the guotient can be defined precisely
as in ordinary algebra.

t Instead of 0, we can use 1 in (10), provided (i) are the sequences which
do satisfy R.
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01

(i) 0[1 0

Its representation is

(ii) (%, 9;0,0) + (x, 9; 1, 1) = &'y’ + xy.
B. Let O be the operation

1

(iii) 00 1

)

where the blanks indicate that there are no K-elements corre-
sponding to the sequences 1, 0; 1, 1.
Consider the operation O’ defined by

01
(iv) o]0 1
110 O
By Case 1, the representation of O’ is
) %'y,

Hence, the representation of O is
(vi) &'y + 0/[x, y;1,0] + 0/ [, 9; 1, 1]
=a'y + 0/(«" + y) + 0/(x" + »").
v. Let R be a relation defined by
0o 1

D
(vii) 0| — +

1+ -
where “+7” indicates that R holds and “—" indicates that R
does not hold. Its representation is the equation

(viii) (%, 9;0,0) + (%, 9;1, 1) = 2"y’ + xy = 0.*

THE UNIVERSITY OF CALIFORNIA

* For a complete set of Boolean representations of binary operations and
dyadic relations in a two-element class, obtained from considerations other
than the above, see my Complete sets of representations of two-element algebras,
this Bulletin, vol. 30 (1924), pp. 24-30.



