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A CONSTRUCTION OF NON-CYCLIC NORMAL 
DIVISION ALGEBRAS* 

BY A. A. ALBERT 

1. Introduction. We know now that every normal division al­
gebra over an algebraic number field is a cyclic (Dickson) alge­
bra. This result was proved by highly refined arithmetic meansf 
and the proof cannot be extended to obtain a like result for al­
gebras over a general field. The very important question of 
whether or not any non-cyclic algebras exist has thus remained 
unanswered up to the present. 

I shall give a construction of non-cyclic algebras of order six­
teen over a function fieldt in this paper. These algebras will be 
proved to be normal envision algebras; they furnish the first ex­
ample in the literature of linear associative algebras of division 
algebras definitely known to be not of the Dickson type. 

2. A Type of Division Algebra. Let K be a non-modular field 
and K(z), z2 = A in F> be a quadratic field over Ky so that A is 
not the square of any quantity of K. I have proved§ the fol­
lowing proposition. 

LEMMA 1. Let A be a division algebra over K. Then A XK(z) 
is a division algebra if and only if A contains no sub-field K(z0), 
z$ = A, equivalent to K(z). 

We shall restrict further attention to fields 

K = F(u, v), 

where F is any real number field and u and v are independent 
indeterminates. Then K is the field of all rational functions with 

* Presented to the Society, April 9, 1932. 
t A proof by H. Hasse (to whom are due the arithmetic considerations) and 

by myself will appear very soon in the Transactions of this Society. 
% Algebras of the type constructed here were first considered by R. Brauer 

who proved (falsely) that they were all division algebras. See Section 4 of this 
paper for a discussion which points out the error in Brauer's work and which 
gives simple examples of Brauer algebras not division algebras. (See also, 
however, a footnote on p. 455, added in proof.) 

§ This theorem is a consequence of a result of L. E. Dickson, Algebren una 
ihre Zahlentheorie, pp. 63-64. For my application to prove the above Lemma 
see this Bulletin, April, 1931, pp. 301-312; p. 309. 
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(real) coefficients in F of two independent marks u and v. We 
shall also consider the corresponding domain of integrity 

/ = F[u, V], 

of all polynomials in u and v with coefficients in F. We shall 
similarly consider quadratic fields K(z) and the corresponding 
domains of integrity 

J[z], 

of all quantities of the form a+(3z with a and /3 in J. 
Let S and e be in K so that we may write 

X a 
(1) Ô = — ; € = — , 

where X, ju, and *> are in J.U u = S2+ e2, then 

(2) ^ = X2 + M2 

identically in u and u. The degree in u of the right member of 
(2) is even while that of the left member is obviously odd. Hence 
(2) and the equation u = d2+e2 for 8 and e in K are both im­
possible. Similar considerations of degrees give the following 
result. 

LEMMA 2. The quantities u, v, uv are each not expressible in the 
form 82 + e2for any S and e of K. 

In particular UT^O2, v^h2 for any S of K so that if 

(3) i2 = u, x2 =* v, 

then K(i) and K(x) are quadratic fields over K. The only ele­
ments ö-\-d in jfiT(i) and not in K whose squares are in K are 
obviously elements of the form ei. Hence, if x is in K(i), then 

x—ti,x2 =v=e2u, 

so that uv— {eu)2, a contradiction of Lemma 2. Hence the field 
K(i, x) is a quartic field with 1, i, x, ix as basis. In fact the 
group of K{i, x) is the Vierergruppe G\, K(i, x) =K(i)XK(x). 
Moreover, as I have shown,* every quadratic sub-field of K(itx) 
is equivalent to one of the fields K{i),K{x)1 K(ix). From Lemma 
2, we have the following lemma. 

* See Lemma 10 of my paper in the Transactions of this Society, vol. 32 
(1930), pp. 171-195; p. 189 for a rational proof of this very elementary result. 
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LEMMA 3. The field K(i, x) defined by (3) has no quadratic sub-
field K(z), 32 = ô2 + €2 = A in Ky S and e in K. 

Let L=K(z)> z as in Lemma 3, be a quadratic field over K. 
By Lemma 1 the algebra K(i, x) XL is a division algebra over 
L and in fact is the quartic field L(i, x) =L(i) XL(x), where 
L(i) =LXK{i) and L(x) =LXK(x) are quadratic fields over L. 
In particular we notice that the quadratic equations £2 = w, 
%2 = v defining L{i) and L(x) are cyclic (irreducible) equations 
in L. 

If we consider two generalized quaternion algebras 

(4) B = (1, i, j , ij), ji = - ij, i2 = u, p = a ^ 0 in K, 

(5) C = (1, x, y, xy), yx = — xy, x2 = tj, )>2 = J 7̂  0 in if, 

over ÜT, the algebras BXL and C X £ over L still remain gener­
alized quaternion algebras over their reference field L; that is, 
the equations £2 = u, %2 = v are still cyclic quadratic equations 
when we extend the reference field from K to L. If A is the nor­
mal simple algebra A = BXC, then A0 = A XL over L is the di­
rect product A 0 = Bo X Co, where B0 = BXL, CQ = CXL over L. 
Hence -4 XI* is a direct product of two generalized quaternion 
algebras over L and, as I have proved,* the following statement 
holds. 

LEMMA 4. A necessary and sufficient condition that AQ over L 
be a division algebra is that the quadratic form 

(6) u\? + aX2
2 - ua\£ - (Î>\4

2 + 6X6
2 - vb\<?) s Q 

in the variables Xi, X2, • • • , X6 in L shall not vanish for any 
Xi, • • • , X6 not all zero in L. 

We shall now select a and b of (4), (5). Take 
n m n si 

(7) a = ^aiV\ b = ^LbiV\ ai = ^a^u1', bi = ] [ j ^ ; > 

where 0̂ 7 and jS»-,- are in F so that a and & are in / . This is no re­
striction on the generality of algebras B and C. We shall further 
select 

ƒ n even, m odd, r = rw odd, s = sm odd, 
(8) s 

I a0 = a:wrn > 0, /30 = 0mSm > 0, 

* This Bulletin, loc. cit., p. 311, Theorem 3. 
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a set of restrictions which enables us to apply Lemma 4 to prove 
the following theorem. 

THEOREM 1. Let A =BXC be defined by (7), (8), (4), (5), and 
let L=K(z), £2 = ô2 + €2 = A, 5 and e in K, be a quadratic field over 
K. Then A0=A XL is a division algebra. 

Without loss of generality we may take S and e in J since if 
Ï>Ô=A, j>e = jLt with X, /x, v in J , then z0 = vz has the property 
ZQ2 =X2+jLt2 as desired while L=K(z) = K(z0). Suppose then that 
A0 is not a division algebra so that, if Q is defined by (6), there 
exist Xi, X2, • • • , X6 not all zero in L such that (2 = 0. Without 
loss of generality we may take the X; to be in J[z] (by multiply­
ing the equation Q = 0 by the square of the least common de­
nominator, in J , of the X;). Hence we may write 

(9) Xi = ai + Pfi (i = 1, • • • , 6), 

where the a» and /3; are in / . ThenX*2 = (a? +/3?A)+2<Xil3iZi so 
that if 

(10) P , = a? + & 2 A , Qi = 2afii, 

the equation Q = 0 becomes 

( uP1 + aP2 - uaPz - vPi - bP5 + vbP6 

I + (uQi + aQ2 - uaQz - vQA - bQh + vbQ«)z = 0. 

But 1 and z are linearly independent with respect to K so that 
(11) implies that 

(12) <t>(uf v) = uPx + aP2 - uaPz - *>P4 - bPh + vbPQ s 0 

in u and v, where the P» are defined by (10) with oti and /3* not 
all identically zero in u and v. 

We have assumed that s2 = ô2 + €2 = A so that Pi^a? + (/3;8)2 

+ (jSi€)2 must have even degree in v. In fact 

(13) Pi = piV2" + Si(u, v), Si = £<(«, v) in ƒ, 

where the degree of Si in v is less than 2p;; and 

(14) pi s= Tiu
2(Ti + qi(u), qi = qt(u) inP[«] , n > 0, 

where qi has degree less than 2<Ti in w. Moreover 

(15) n ^ 0, n = 0 if and only if P* s X* = 0. 
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The polynomial (12) is a sum of six terms. We use (13), (14) to 
arrange each of these six terms according to descending powers 
of v whose coefficients are polynomials in u arranged according 
to descending powers of u. Since </>(u, v) = 0 in u and v, the total 
coefficient of the highest power of v appearing in the six terms 
is a sum of possibly six polynomials in u which is identically 
zero. Since this term is to appear explicitly because the A; and 
hence the P t are not all zero, at least one of these six (or fewer) 
polynomials must be not identically zero. But their sum is zero 
so that at least two of them must be not identically zero in u. 

Suppose that this highest power of v were an odd power. I t 
must appear only in 

(16) - vPé - bPs 

since the remaining terms of (12) all have even degree in v. Then 
this power must appear in both vP± and bP5 and its total coeffi­
cient is evidently 

(17) - (pi + pJfm) =0inu. 

But p± has even degree in u and p$bm has odd degree in u by (14) 
and (8), so that (17) is impossible. Hence the highest power of v 
cannot be an odd power. 

I t follows that the highest power of v in (12) appears only in 

(18) uPx + aP2 + vbP6 - uaPs. 

The leading coefficients in the terms of (18) are respectively 

(19) upi, anp2, bmpG, — uanp3, 

so that the total coefficient of the highest power of v is a sum of 
the expressions in (19). These expressions have leading terms 

(20) T I « * * + 1 , a0T2U2<T*+r, p0TeU2,T*+s, - a0TZu2(T^r+1 

when arranged according to descending powers of u. If the 
highest power of u appearing in the total coefficient we are dis­
cussing were an even power, it would appear only in the single 
term — a0TzU2<rz+r+l and could not have total coefficient zero. 
Hence this power is odd and its total numerical coefficient is 
a sum of the real numbers T± ̂  0, a0r2 ^ 0, /30Te ^ 0. But these real 
numbers are all positive or zero, they must not all be zero, and 
yet this sum must be zero, which is impossible. Hence the assump-
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tion that the X; are not all zero has led to a contradiction and 
we have proved Theorem 1. 

Since A XL is thus a division algebra so must algebra A be a 
division algebra. Hence we have also the following result. 

THEOREM 2. The algebra A of Theorem 1 is a division algebra. 
By its form it is a normal division algebra of order sixteen over K. 

3. The Existence of Non-Cyclic Algebras. We shall prove that 
the algebras A of Section 2 are non-cyclic, that is, they contain 
no cyclic quartic sub-field. We shall first require the following 
rather trivial lemma. 

LEMMA 5. The field K contains no quantity whose square is — 1. 
For if a2 = — 1, a in K, then b = ca, where b and c are in J , so 

that b2+c2 = 0. But, as we saw in (10), (13), (14) this is im­
possible unless b = c = 0, whereas c is the denominator of a and 
hence c^ 0. 

When a field K contains no a such that a2 = — 1 it has the 
following property.* 

LEMMA 6. Every cyclic quartic field C over K has a quadratic 
sub-field K(z), z2 = ô2+e2, S, e in K. 

We shall prove that the algebras A of Section 2 contain no 
quadratic sub-field K{z) as above and hence no cyclic quartic 
field C containing K(z). For if K(z) is any such field, Theorem 1 
says that AXK(z) is a division algebra. But Lemma 1 states 
that then A contains no quadratic sub-field equivalent to K{z) 
and hence no C. We have proved the first known theorem on the 
existence of non-cyclic algebras. 

THEOREM 3. The normal division algebras A of Section 2 are 
non-cyclic algebras. 

4. The Algebras of Brauer. We have considered algebras of 
order sixteen over a function field F{u, v). Moreover these alge­
bras were direct products of algebras of order four. R. Brauer 
was the first author to consider such algebras. He stated that 
any algebra A = BXC, where B and C are given by (4), (5) is a 
division algebra if the fields K(i), K{x) are merely distinct 

* A canonical form of the cyclic quartic is well known to be x^+lvpx2 

-f„2e2p==o, p = ô2+€2. Every cyclic quartic field will then contain a quadratic 
sub-field K(z), z2 — p — d2-\-e2. See R. Garver, Quartic equations with certain 
groups, Annals of Mathematics, vol. 29 (1928), pp. 47-51. 
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quadratic fields. But this is not true since we may take a= —u, 
b = — v, so that as in our proof of Lemma 3, K(i, x) is a quartic 
field, while 

(i+j)2 = i2+j2+ij+ji = u-u = 0. 
which is impossible in a division algebra. Brauer's proof of this 
false theorem is of course incorrect.* He gave a matrix representa­
tion of the algebra A as an algebra of four-rowed square mat­
rices with elements in K(all2> b112) and wrote 

(21) £i = Xi + X2a
112 + Xzb

l>2 + Xta1'2, bl<2 (Xh • • • , X4 inK). 

He had three other quantities 771, f 1, coi of similar type and de­
fined £2, £3, £4 to be the result of replacing respectively a112 by 
-a1 /2 , &1'2 by -bl'\ and both a1'2 by -a1 /2 , b1'2 by -b1'2 in £1; 
similarly for t\v, f„, and cd„. Brauer's matrices were thus 
given when sixteen independent variables ranged over all quan­
tities of K. He then attempted to prove§ that the determinant 
of the general matrix (a quartic form in the sixteen variables) 
could not vanish (identically in u and v) for any values of the 
variables in K. He put v = 0 and obtained 

(£i£2 — ^1772) (£3^4 — mwù = 0. 

He then concluded that since either £i£2 or £3£4 has u as a factor 
then some one £„ has u as a factor, whence all the £„ have w as 
factor. This is false as, for example, £i = w + ( —w)1/2 gives £2 = ^ 
— ( — u)1/2 and £i£2 = u2+u has w as factor while neither factor of 
the product has u as factor. In fact under Brauer's initial as­
sumptions we know nothing of the nature of a and b when we 
put v — 0. Brauer was also able to conclude from the above false 
argument that it followed that £„ vanished at v = 0 and hence 
had v as factor. But this is also false as a and b might both 
vanish at v — 0 and the coefficients of £1 in (21) might still not 
have v as factor. It is in fact true that Brauer's arguments only 
hold true when a and b are rational,$ an assumption that he 
seems to have had in mind.§ 

* See, however, footnote on p. 455, added in proof. 
t See Brauer's paper in the Mathematische Zeitschrift, vol. 31 (1929), pp. 

733-747 for his consideration of these algebras. He gave his proof on pp. 746-
747. Brauer used a and b respectively where we have used b and a so that his 
£2 is obtained from £1 by replacing b112 by — fe1/2 instead of a112 by — a1/2. 

t Brauer took F^R, the field of all rational numbers. 
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In my Lemma 4,1 have in fact reduced the condition that A 
be a division algebra from a condition that a quartic form in 
sixteen variables be not a null form to an equivalent condition 
on a quadratic form in only six variables. I t is the application of 
this far simpler condition that has enabled me to prove the 
existence of non-cyclic algebras. 

I have shown in the above that among the algebras considered 
by Brauer there exist non-cyclic division algebras and also alge­
bras not division algebras. There remains the question as to 
whether any of the algebras of Brauer are cyclic division alge­
bras. I have recently proved* that the algebra A =BXC over 
R(u, v), where we replace u by — 2us> take a to be a rational 
number which is a sum of two squares and not a square, and 
take b= — 1, is a cyclic normal division algebra. This is one of 
the algebras of Brauer when we pass to a new basis of B by 
taking i to be replaced by u~H whose square is — 2w, and then 
replace u by the equivalent indeterminate —2u. 

I have therefore proved the existence of cyclic and non-cyclic 
division algebras among the algebras considered by Brauer as 
well as the existence of algebras not division algebras. I have 
also given, in Lemma 4, a necessary and sufficient condition 
that a Brauer algebra be a division algebra. 

T H E UNIVERSITY OF CHICAGO 

§ A recent communication from Brauer verifies this conjecture. Brauer used 
"Zahl in K" to mean rational number as opposed to non-constant function of u 
and v. With this interpretation, his work is correct, but it does not extend to the 
general case considered here. The difficulty was thus one of the interpretation 
of language, rather than a mathematical error. [Note added May 10, 1932.] 

* This Bulletin, October, 1931, pp. 727-730. 

ERRATUM 

On page 186 of the March issue of this Bulletin (vol. 38, 
No. 3), in line 3 from the foot of the page, condition (2) should 
read 

^2n \à2an | instead of X/*n |A2aw |. 

C. N. MOORE 


