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TWO BOOKS ON DIFFERENTIAL GEOMETRY

Eléments de Géométrie Infinitésimale. By Gaston Julia. Paris, Gauthier-Villars,
1927. vi+242 pp.

Lehrbuch der Differentialgeometrie. By A. Duschek and W. Mayer. Band I,
Kurven und Flichen im Euklidischen Raum, von A. Duschek. vi4+250 pp.
Band II, Riemannsche Geometrie, von W. Mayer. vi+ 245 pp. Leipzig and
Berlin, B. G. Teubner, 1930.

It is interesting to compare Julia’s book with the first volume of Duschek-
Mayer’s work, as they deal with the same subject, classical differential geome-
try. Both books use invariant notation; both endeavor to be accurate in the
formulation of the theorems; both are of about one size. Still they differ greatly
in general aspect and in material.

Julia’s book follows more the classical pattern, and refers often to the treat-
ises of Picard, Goursat, de la Vallée Poussin, Darboux, and to the work of
Humbert. It uses vector methods for the formulation of certain general the-
orems, but often slips into coordinate notation, as required in special problems.

Duschek’s book, on the contrary, persistently attempts to use not only vec-
tor methods, but also tensor calculus in ordinary differential geometry. As such,
it is a pioneer work, with the possible exception of Ricci’s never printed Lezions
sulla Teoria delle Superficie and J. E. Campbell’s Course of Differential Geometry
(1926), which, however, differ very much from Duschek’s treatise. This results
in a tendency to dwell upon theorems of a general nature.

A striking difference lies in the large amount of space that Julia devotes to
the theory of contact and to the theory of envelopes (pp. 9-72, one-fourth of the
book). Duschek devotes to this subject only a short discussion. Is it because
Julia is in first instance an analyst? The modern theory of contact and envel-
opes was indeed introduced into differential geometry by two analysts, La-
grange and Cauchy. This fact makes Julia’s book one of the best sources of
information on contact and on envelopes. We find here contact of plane curves,
of space curves, of curves and surfaces, and of surfaces. Then we have the dis-
cussion of the envelopes of systems of

(a) plane curves of equation f(x, v, ) =0;

(b) plane curves of equation f(x, ¥, &, 8) =0, ¢(a, 8)=0;

(c) surfaces of equation f(x, ¥, 2, ) =0;

(d) surfaces of equation f(x, ¥, 2, «, 8) =0, ¢(a, 8)=0;

(e) surfaces of equation f(x, v, 2, «, 8) =0;

(f) space curves of equation f(x, v, 2, @) =0, g(x, ¥, 2, a)=0;

(g) space curves of equation f(x, ¥, 2, @, 8) =0, g(x, ¥, 2, «, 8)=0;

which discussion leads to the theory of congruences of curves, with mention
of focal properties.

We should have liked to see here a more detailed discussion of the behavior
of the envelope, taking higher derivatives into account. Apart from the paper
by Risley and McDonald in the Annals of Mathematics of 1910-11 (second
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series, vol. 12), and a paper by de la Vallée Poussin, reprinted in the sixth edi-
tion of his Cours d'Analyse Infinitésimal (Tome II, 1928, published after
Julia’s book), very little has been done on this important subject.

In later parts of the book Julia remains interested in the subject of con-
gruences. He studies line congruences, especially normal congruences, with
some interesting examples. Ruled surfaces and developable surfaces are dis-
cussed.

Other points treated in Julia’s book are the classical theory of space curves
and surfaces, Bour’s theorem, and conformal representation applied to map
projection. In an appendix we find remarks on imaginary elements and on vec-
tor notation. Vector notation is, in this treatise, just a short way to write three
component equations in euclidian three-space. It is not used for curvilinear co-
ordinates on the surface.

Duschek’s book, on the contrary, has the use of Ricci notation as its special
feature. The selection of the material is in accordance with this notation. In an
introduction he explains the principal group conceptions and the Erlanger pro-
gram. Vector notation is replaced by component notation v;, =1, 2, 3, in
accordance with the dialectic method of Ricci calculus, which brings vector
calculus to a higher perfection by the consistent use of components. Scalar
products are written v;w;, vector products are obtained with the aid of the unit
trivector e;jx, so that

€ijkViWe = Pi
stands for

vXwW=p
in the Gibbs notation.

The elementary theory of curves can easily be translated into such nota-
tion. For the surface a new set of vectors and tensors is necessary, those defined
with respect to transformations of curvilinear coordinates on the surface.
Here we get vectors v,, a=1, 2, and tensors p,, @, B=1, 2. Latin indices run
from 1 to 3, Greek indices from 1 to 2. Now we can develop readily the general
properties of curves on the surface. We also find a discussion of analytic curves
with complex variables, of so-called ametric parameters on analytic surfaces
in the complex domain (these are parameters for which ds?= gisduidus), of the
determination of a surface by its first and second differential form, of Gauss-
Bonnet's theorem, of geodesic conic sections, and of Liouville surfaces. As an
example of differential geometryin the large we find the theorem on the impossi-
bility of deforming a closed ovaloid.

Julia and Duschek differ in the way they introduce the positive direction of
the principal normal to a space curve. For Julia this direction is that from the
point of the curve to the center of curvature. The radius of curvature is always
positive. Duschek, as does Blaschke, leaves the direction indeterminate, the
curvature k and the unit normal vector n being only related by the formula
dt/ds=Fkn, t representing the unit tangent vector. Julia’s method leads to a dif-
ficulty in the case of plane curves, where a point of inflexion suddenly turns the
moving “two-leg” through an angle of 180°. He therefore changes the definition
for the plane. Duschek’s definition does not lead to this, and it can be shown
that in the plane the sign of k& can be uniquely defined.
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In Duschek’s book there is no thorough discussion of the relations between
tensors on the surface and tensors in space. The “induction” of a tensor in a
surface by a tensor in space is not introduced. This is, however, regularly done
in the second volume of Duschek-Mayer's treatise. In the first volume we there-
fore find the second fundamental tensor da8 defined in this way:

0%x;

B QU dus

bas v (G=1,2,3a,8=1, 2),
where »¢ are the components of the surface normal and x; = x:(u,) are the equa-
tions of the surface. This is sufficient for ordinary differential geometry.

Covariant differentiation on the surface is introduced after the discussion
of space curves and the elementary theory of surfaces. It is mainly used for a
renewed discussion of the Gaussian curvature tensor, for the proof that a sur-
face is determined in shape by its two fundamental tensors, for infinitesimal
deformation, and for geodesics.

A chapter on some special subjects (ruled surfaces, minimal surfaces) con-
cludes this interesting book.

Walther Mayer has written the second volume of Duschek-Mayer’s text-
book on differential geometry, and it has in many respects a character similar
to that of the first volume. It deals with Riemannian geometry, and is a very
valuable addition to the literature on this subject. It contains a careful intro-
duction to tensor calculus, without which the study of Riemannian manifolds
seems to be very difficult. Then follow a chapter on curves in euclidean z-space
with the Frenet formulas for Riemannian manifolds, and a forty-page introduc-
tion to the calculus of variations with application to geodesics. After this we
get the parallel displacement of Levi-Civita, geodesic manifolds, and a chapter
on manifolds immersed in a Riemannian manifold. The spaces of constant
Riemannian curvature receive special attention. A special feature of the book
is Chapter IX, containing what the author calls “Das Formenproblem.” Here
an old question is finally settled, namely the generalization to » dimensions of
Bonnet's theorem that a surface is determined in shape by its first and second
fundamental tensors. Here the complete theory is given for an /-dimensional
manifold (! <#), in an #-dimensional euclidean space. The formulas constructed
for this purpose are the generalization of the Frenet formulas to this general
case. Since that time Schouten and van Kampen have restated the results in
another way (Mathematische Annalen, vol. 105 (1931); see the remark by
Duschek in Zentralblatt fiir Mathematik, 26 Oktober 1931, p. 153).

An appendix gives a generalization of Meusnier’s theorem, the integral
theorem of Gauss in Riemannian manifolds, and the derivation of the Eulerian
equations for the gyroscope in tensor calculus, where they appear as an almost
trivial result of the fundamental equations.

As a result of the collaboration of the two Viennese scholars we therefore
have an extremely interesting addition to our textbooks on differential geome-
try.

D. J. Struik



