
T H E CALCULUS OF VARIATIONS AND T H E 
QUANTUM THEORY* 

BY G. A. BLISS 

1. Introduction. Several years ago an insistent curiosity caused 
me to forsake temporarily fields of mathematical interest more 
legitimate for me in order to find out if possible the character 
of the new quantum theories in which my physicist neigh­
bors and some of my mathematical friends seemed to find so 
much of scientific interest and excitement. I was entirely ignor­
ant of the theory at that time and was greatly surprised to find 
that my own specialty, the calculus of variations, through the 
media of mechanical and optical conceptions, had played an 
important role in its development. The quantum theory was 
then in an exceedingly fluent stage, and though the unanswered 
mathematical questions which presented themselves were nu­
merous and significant it seemed to me useless for mathema­
ticians to spend large amounts of time in endeavoring to perfect 
mathematical details when some new paper might at short no­
tice cause fundamental changes in the whole structure of the 
theory. Every one who has followed the development of the 
quantum theory would agree, I think, that this impression was 
justified. At the present time the situation seems somewhat dif­
ferent. I have heard assurances from various reliable sources 
that the leaders in the promotion of quantum mechanics, men 
of wide physical experience and of daring in mathematical ex­
ploration distinctly beyond that of the average pure mathe­
matician who takes his rules so seriously, have reached some­
thing like agreement. These statements should perhaps not be 
accepted too readily, as they sound like others that have been 
made in the past and which have afterward needed modifica­
tion. But to the seeker after knowledge, less experienced in this 
field like myself, it also seems that an equilibrium has approx-

* Retiring Address of the Vice-President of Section A of the American As­
sociation for the Advancement of Science, delivered at New Orleans, December 
29, 1931, at a joint meeting of this Society, the American Physical Society, and 
Section A of the A.A.A.S. 
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imately been reached in the fundamentals of the quantum 
theory, and that pure mathematicians could therefore reasona­
bly endeavor to contribute in a valuable way to the develop­
ment and perfection of its mathematical structure. 

In the following pages I do not intend to at tempt to point 
out mathematical defects in the quantum theory, though it 
seems clear that such defects exist. They appear for the most 
part in the generalities and less often in the special problems 
which have so far been successfully studied. My endeavor here 
will rather be to present some of the mathematical aspects of 
the theory to those of my mathematical colleagues who have 
not yet delved in the field. They will agree with me, I think, 
that there is no other applied mathematical domain whose de­
velopment has involved a wider variety of mathematical tech­
niques. 

This paper was written originally as a retiring address for a 
chairman of the mathematicians in Section A of the Association. 
I was somewhat perturbed when I found that it had been allotted 
to a joint meeting of mathematicians and physicists. To those 
of the latter class who are here present I can only express my 
sympathy. I t will be impossible for me to enlighten them with 
regard to quantum mechanics, and my mathematics may seem 
to them too technical. My only comfort is that it may possibly 
not seem more so than that of their own colleagues who special­
ize in the quantum theory. 

2. Normal Congruences and Optical Fields. One of the simplest 
problems of the calculus of variations is that of finding in the 
class of arcs 

y = y(%), z = z(x), (xi S oc ^ #2), 

joining two fixed points in ^0-space, one which minimizes the 
length integral 

j = f '(I + y'2 + zf2)1/2dx. 

This is a relatively simple problem concerning whose solution 
we know much intuitively. The possible minimizing curves are 
straight lines 

(i) y = ax + b, z = ex + d, 



i932-] QUANTUM THEORY 203 

the totality of which depends upon four constants a, b, c, d. 
A congruence of lines is a two-parameter family selected out of 
this four-parameter family by setting a,b, c, d equal to functions 
of two other parameters u, v. Geometers have long known that 
the lines of such a congruence will not in general have a surface 
which they all cut at right angles. If, however, there is one sur­
face cutting all the lines of the congruence orthogonally, then 
there is a whole family of such surfaces given by an equation of 
the form 

(2) S(%, y, z) = constant. 

The congruence is in that case called a normal congruence. Such 
congruences of lines have many interesting properties. For ex­
ample the segments of lines of the congruence intercepted by 
two of the surfaces (2) are all equal in length, and the congru­
ence has so-called focal surfaces to which all of the lines of the 
congruence are tangent. But the property which interests us 
most here is that a normal congruence may be determined by 
its family (2) of orthogonal surfaces as well as by its lines. Not 
every family (2) has a congruence of straight lines cutting it at 
right angles. The characteristic property of those families of 
surfaces which do belong to a normal congruence is that for 
such families the function S(x, y, z) can always be selected so 
that it satisfies the differential equation 

&X ~T ay + Oz = 1, 

where Sx, Sy, Sz are the partial derivatives of S with respect 
to x, yt and z. 

All this will seem rather familiar to my physicist hearers be­
cause the principal business of the theory of geometrical optics 
is with normal congruences. The straight lines are the light rays, 
the orthogonal surfaces are the wave fronts, and the focal sur­
faces are the caustic surfaces of optical theory. An interesting 
property of an optical field of rays for the physicist is of course 
that it retains its character after a reflection or a refraction. Sir 
William Hamilton devoted one of his early published papers* 
to the study of the properties of such optical fields. I t was the 

* Theory of systems of rays, Transactions of the Royal Irish Academy, vol. 
15 (1824), pp. 69-173; vol. 16, Part I, pp. 3-61, Part II, pp. 93-125; vol. 17, 
pp. 1-144. 
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more than 300-page effort of a youthful writer, and probably 
unnecessarily long, but it contains the source of the ideas which 
later influenced profoundly the development of the calculus of 
vaaritions and the theory of analytical mechanics. 

3. Generalizations in the Calculus of Variations. It has been 
found that properties analogous to those of normal congruences 
are possessed by the minimizing curves of far more general 
problems of the calculus of variations than that of determining 
the shortest distance. When we try to minimize an integral 

ƒ(*> yu y* yl, yi)dx 
X\ 

in the class of arcs 

yi = yi(x), y2 = y*(x), Oi ^ x S x*) 

joining two fixed points in x^i^-space we find that the only pos­
sible minimizing curves are the solutions of the differential 
equations 

(3) - T ^ = /n» (* = 1,2). 
ax 

I use the notations x, yi, y^ instead of x, y, z because then all of 
our equations can be readily interpreted for the ( r + ^-dimen­
sional case, instead of the 3-dimensional case, by simply chang­
ing the range k~l, 2 to k = l, - • - > r. Meanwhile, for the space 
of points (x, yi, y2) we can use the language of ordinary 3-
dimensional geometry. The differential equations (3) are of the 
second order and their solutions, which are called extremals in 
the calculus of variations, form a family of curves whose equa­
tions, like those of the straight lines (1), contain four arbitrary 
constants. 

I t has been found, following Hamilton and probably earlier 
writers also, that the equations (3) take a very pleasing form 
when new variables x, yk, zk are introduced in place of the 
original variables x, yk, yu by means of the equations 

Zk = fvk'(x, yy ƒ ) , (* = 1, 2). 

Let us define a Hamiltonian function H by means of the equa­
tion 

H(x, y, z) = y£fVk' - ƒ, 
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it being understood here as elsewhere in this paper that a term 
containing the same subscript k twice stands for the sum of the 
terms of that form for the various special values in the range of 
k, as in tensor analysis. I t can be proved that the equations of 
the extremals now take the form 

dyk dzk 
(4) - r = H>» -7-= -H**> (* = l>2)-

dx ax 
The variables x, yk, %h are called canonical variables, and the 
equations (4) are the canonical equations of the extremals. 
Equations (4) may also be written in the form 

dyk dzh 
(5) ~ = (yt, B), — = (zk> H), (k = 1,2), 

dx dx 

where the brackets on the right are so-called Poisson brackets 
defined for two arbitrary functions ƒ and g of x, yk, zk by the 
equation 

df dg df dg 
(6) (ƒ, g) = T — — T — • 

dyk ozk dzk oyk 

For the fields of geometrical optics the equation which is 
satisfied when the direction dxidyldz in :ryjs-space is at right 
angles with a direction \\y'\z' is the well known orthogonality 
condition 

dx + y' dy + z' dz = 0. 

In the calculus of variations it is found that this equation must 
be replaced by the equation 

(ƒ - Jkfy^dx + fn'dyk = 0. 

A direction dx\dy\\dyi is transversal to the direction \\y\ \yi' 
at the point (x, y) if it satisfies this equation; and a surface is 
transversal to I'.yily^ at (#, y) if all the directions dx\dy\\dyi 
tangent to the surface at (#, y) satisfy the equation. 

We are now in possession of data sufficient to justify a gen­
eralization of the notion of a normal congruence of straight 
lines. Instead of a two-parameter family of straight lines we con­
sider a two-parameter family of the extremal curves which 
satisfy the differential equations (3) or (4). Such a congruence 



206 G. A. BLISS [April, 

of curves is called a Mayer family, after the name of its dis­
coverer, if there is a single surface which cuts every member of 
the family transversally. I t is provable, then, that there is a 
single infinity of such surfaces, the so-called transversal sur­
faces of the Mayer family, defined by an equation of the form 

S(x, yi, yz) = constant, 

and analogous to (2). Not every such set of surfaces is the set of 
transversal surfaces of a Mayer family. In order that this 
property may be possessed by the surfaces it is necessary and 
sufficient that they should be definable by an equation S(x, y) = 
constant for which S satisfies the partial differential equation 

Sx + H(%, y, Sy) = 0. 

This is the famous Hamilton-Jacobi partial differential equa­
tion of the calculus of variations. I t has many interesting rela­
tionships with the extremals besides the one which has just 
been described. 

We need one further notion from the calculus of variations in 
order to complete the list of those upon which the development 
of the quantum theory has depended. The variables x, yk, Zk 
introduced above are not the only ones for which the differential 
equations of the extremals have the canonical form. Trans­
formations 

(7) * = *(X, F ,Z) , yk=yk(X9Y,Z), zk = zh(X, YyZ), 

which take x, yk, %k into new variables X, Yk, Zk and which 
transform the canonical differential equations into others of the 
same form are called canonical transformations. Such trans­
formations can be constructed in many different ways but the 
most important ones for the quantum theory are those which 
replace (x, yk, zk) by new variables (X, Yk, Zk) = (x, wk, Jk) by 
means of equations of the form 

(8) x = x, zk = SVk(x, y, ƒ) , wk = Sjh(x, y, J), 

where S(x, y, J) is a solution of the differential equation 

S, + H(x,y,Sy) = £ ( J ) , 

involving the variables J"»• as parameters. The last set of equa­
tions (8) must be solved for the yk and substituted in the second 
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in order to secure the transformation in the form (7). The im­
portant property of the transformation is that in terms of the 
variables x, wkl Jk the differential equations of the extremals 
take the very simple form 

dwk dJk 
- r = Ejk, — = 0, 
ax ax 

and the equations of the extremals are 

(9) wh = EJh(J)t + ak) Jk = /5*, 

where the aks and (3ks are constants. 
The results from the calculus of variations mentioned in the 

preceding paragraphs have been described for the 3-dimen-
sional space of points (x, yi, y2). But the equations which have 
been written are valid for the (r+1)-dimensional space of points 
(%, yu - • - , yr) if we change the range of the indices k from 1, 2 
to 1, • • • , r. The number of parameters in the equations of the 
family of extremals is of course 2r instead of 4, and the Mayer 
families for (r+1)-dimensional space contain r parameters in­
stead of only 2. 

4. Applications of the Calculus of Variations. The calculus of 
variations appears in the quantum theory through its applica­
tions in mechanics. The equations of motion of a particle of 
mass m moving in a field of force with the potential function 
V(x, yy z) are the equations 

dmx' dmy' dmzf 

(10) — - = - V„, —L=-V» —- = - V., 
at at at 

where the primes indicate derivatives with respect to t. Ac­
cording to the well known principle of Hamilton they are the 
differential equations of the extremals of the integral 

= I ( r -(11) 1= (T-V)dt, 

where T = m(x,2+y,2+z,2)/2 is the kinetic energy of the mov­
ing particle. Thus all of the results of the calculus of variations 
described in the preceding section, with suitable changes in 
notation, find their applications in mechanics. It is not neces-
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sary to review them in detail for this special case. It should be 
mentioned, however, that a similar formulation of Hamilton's 
principle holds for n particles instead of one, and for any 
auxiliary variables q% in terms of which the coordinates of the 
particles may be expressed. The variables /, g>, qk replace the 
x> Jk, Jk of the preceding section. The kinetic energy T is a 
homogeneous quadratic form in the derivatives q^ with coeffi­
cients functions of the qk, and the canonical variables are t, 
Qky pk, where the momenta pk are defined by the equations 
pk = Tq'k. The Hamiltonian function H(t, p, q) turns out to be 
the total energy H= T+ V of the system and is equal to a con­
stant E for the motion of every system. 

This is a familiar basis for the theory of Newtonian analytical 
mechanics, but the modification of equations (10) which arises 
in the theory of relativity should also be mentioned. In the non-
relativistic case the mass m i s a constant, but in the relativity 
theory it varies in accordance with the law m =m 0 / ( l —v2/c2)112, 
where m0 is the so-called rest-mass, v is the velocity of the parti­
cle, and c the velocity of light. The equations (10) are no longer 
the differential equations of the extremals of the integral (11) 
when T has the value described above. They will retain this 
property, however, if we replace T by the function 

Ti = mQc2[l - (1 - f>2A8)1/aL 

as can readily be verified. The Hamiltonian function for this 
relativity case turns out to have the value H= T2 + V, where the 
kinetic energy T2 is now given by the formula 

T2 = rn0c
2[(l - fl2A2)-1/2 - 1] . 

There are two further principles, important for the purposes 
of this paper, which are phrased in terms of concepts of the 
calculus of variations. The principle of least action in mechanics 
says that every trajectory of a particle of mass w, moving with 
total energy E in a field of force with the potential function F, 
is an extremal of the integral 

I = f \lm(E - V)(x? + y? + z?)]1'^ 

(12) 

= f 2[2w(£- V)]l'*dst 
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where r is a parameter in terms of which the coordinates x, y, z 
of the trajectory are to be expressed and 5 is the length of arc. 
The time / at which the particle arrives at the place defined on 
the trajectory by a value of r is expressible by the equation 

/ = h + fT [m(x? + y? + z?)/{2(E - V))]^dr 

Fermat's principle in geometrical optics has a form much like 
that of this mechanical principle of least action. It says that 
rays of light in a medium in which the velocity of light at a 
point (#, y, z) i$u(x, y, z) are extremals of the integral 

(13) I = C f * (\/u)(x? + y? + z*yi*dz = C f \l/u)ds, 

where C is an arbitrary constant whose value does not affect 
the determination of the extremals in any way. The two integrals 
(12) and (13) are identical if 

(14) u = C/[2m(E - V)]v\ 

Hence the dynamical trajectories of a particle moving with 
total energy E are the same as the paths of light in a medium 
where the velocity of light at each point is given by the equa­
tion (14). 

John Bernoulli used an analogy similar to this in 1697 when 
he determined the curve down which a particle would fall under 
the action of gravity from one fixed point to another in the 
shortest time. He found that the time of descent was given, ex­
cept for a constant factor, by the integral 

ƒ' z-VHs. 

Hence the curve of quickest descent must be a light-ray in a 
medium where u — Cz112. By dividing the medium into horizon­
tal layers and applying the law of refraction he was able to find 
the differential equation of the minimizing curve and to show 
that the curve of quickest descent is an inverted cycloid. The 
paper in which he found this result is often designated as the 
origin of the calculus of variations. 
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5. The Quantum Theory of Bohr, In my effort to give my fellow 
mathematicians some idea of the role which the calculus of 
variations has played in the development of the quantum theory 
I do not hesitate to begin with the early theory of Bohr, even 
though it has been superseded in recent years by quite different 
mathematical mechanisms. It still affords a convenient picture 
by means of which the physicist correlates a considerable part 
of the data in which the quantum theory had its source, and 
with the theory of Schrödinger it forms the chapters of the 
development of the quantum theory in which the calculus of 
variations had its greatest influence. Furthermore I believe that 
a knowledge of these earlier stages is essential to an understand­
ing of quantum mechanics in its more recent forms. 

To the mathematicians I may explain that one of the first 
problems of the quantum theory, and one of the least compli­
cated illustrations of it, is the theory of the spectrum of hydro­
gen. On the one hand we have the spectrum, itself, as shown in 
the figure which is drawn without reference to scale. The lines 
fall into four series which have been observed experimentally, 
and others not indicated, each of which has lines converging to 
a dotted limiting line. Each line is due to light of a particular 
wave length X, and when the figure is drawn to scale the lines 

Infra-red Visible Ultra-violet 

Brackett Ritz Bal mer Lyman 
Paschen 

are spaced proportionally to their wave numbers v = 1/X. It has 
been found empirically that these wave numbers are given with 
great accuracy by the famous Balmer formula 

v = R(l/m2 - 1/n2), 

in which R is a constant and m and n are integers. The Lyman 
series is the sequence of lines corresponding to m = 1 and 
arbitrary positive integral values for n, the Balmer series to 
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m = 2, and so on. Associated with this picture was the physi­
cist's conception of a hydrogen atom as a dynamical system con­
sisting of a heavy positively charged nucleus with a much 
lighter electron carrying an equal negative charge revolving 
around it. What could be the connection between the two? 

To answer this question, Bohr assumed that the electron 
is not free to move in all of the orbits which would be permitted 
by ordinary dynamical theory, but only in any one of a de-
numerable infinity of orbits, the so-called stationary states of 
motion, selected in a way which will presently be described. 
Radiation was supposed to be emitted only when the electron 
fell from one of these orbits to another in which it had a smaller 
total energy, and the wave number of the radiation emitted 
was proportional to the difference Ei—E2 between the total 
energies of the atomic system in the initial and final states. This 
somewhat crude dynamical picture corresponds to the fact that 
hydrogen gas does not emit radiation except when suitably ex­
cited, that is, except when the electrons in its atoms have been 
knocked by a bombardment of some sort into stationary states 
with larger total energies from which they can fall to states 
with smaller energy-values. Similar assumptions were made for 
much more complicated atoms with many electrons revolving 
around their nuclei. 

The calculus of variations was of assistance in the specifica­
tion of the stationary states and the determination of their 
orbits. I t provided canonical transformations from the variables 
h Qk, Pic of the atomic system to new canonical variables t, 
Wk, Ju which had among other properties those described in 
equations (8) and the following equations of §3 above. For an 
atomic system these equations do not involve t and have the 
somewhat simpler form 

(15) pk = SH(q, ƒ) , wk = SJk(q, / ) , 

(16) H(q,Sq) = £ ( / ) . 

The equations of the trajectories in the new variables are iden­
tical with equations (9) which show among other things that 
the J ' s are really constants of integration. In accordance with 
assumptions which had proved successful in the simplest cases 
the quantum orbits were determined by values of the J's of the 
special form Jk = nkh, where nk is an integer and h is Planck's 
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constant, and the frequency v = c/\ of the emitted radiation 
when the system fell from a stationary state of total energy JEi 
to one of total energy E2 was to be given by the formula vh 
= Ei — E2. This last equation, when the extremals for two sta­
tionary states of the hydrogen atom were determined and the 
total energies JEi, E2 expressed in terms of the integers m} n be­
longing to the two states, gave the Balmer formula. It was the 
first great success of the theory. 

But the agreement between theory and experimental results 
was even more striking than this. When hydrogen gas is excited 
in a constant electric force field each spectrum line is replaced 
by a symmetrically situated group of neighboring lines, and a 
similar effect with a different type of group is produced by a 
constant magnetic field. By modifying the potential function V 
of the atomic system to take account of these electric or mag­
netic forces, formulas for the frequencies v, agreeing well with 
those observed on the spectrum, were found by the process de­
scribed in the preceding paragraphs. I t was still more interest­
ing perhaps that the fine structure of the lines of the spectrum, 
detectable by more delicate measurement, was accounted for by 
replacing Newtonian mechanics by the mechanics of the rela­
tivity theory, as described in §3 above. These were indeed im­
pressive agreements between observation and theory. 

For more complicated atoms the mathematics became of 
course much more difficult and was theoretically somewhat dis­
turbing. Besides the properties listed above the canonical trans­
formation (15) was further required to satisfy conditions of the 
form 

(17) Jk = I pkdqu = I Sqkdqk, 

where the integrals were taken throughout a period of the mo­
tion of the atomic system. These could be satisfied by trans­
forming the J's to other similar constants when the integral 
S(q, J) of equation (16) was a sum of functions each containing 
only one of the variables qi, and progress had been made in the 
study of more general cases. But I think it must have been a 
relief to many when at this stage the quantum theory was given 
an entirely new form by the advent of the methods of Heisen-
berg and Schrödinger. 
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Before we take up the consideration of these later develop­
ments we should note that for canonical variables Wk, Jk a con­
sequence of the equations (17) was that each coordinate g of a 
particle in the periodic atomic system was expressible as a func­
tion 

q = q(w, J) = q(w, nh), 

which was periodic with period unity in each variable wk. On 
account of this periodicity q could be expanded, for a quantum 
orbit having Jk = nkh, in a Fourier series of the form 

q = X)C(^, T)e2viiTl-Wl+'"+Trwr)j 

where the sum is taken for all sets r = (ri, • • • , r r) of positive 
and negative integers. This is an ordinary multiple Fourier series 
with the sines and cosines replaced by their values in terms of 
exponentials, and it is readily provable that c(n, — T) and c(n, r) 
are conjugate imaginaries. The corresponding equation for q 
in terms of the time is found by substituting the values (9) for 
the w's and has the form 

(18) q = 23e(fi,r)«2*w<w^«, 

where 
N(n, T) = TkEJk(nh). 

For a fall from a state defined by integers n to one defined by 
m's the frequency of the emitted radiation is 

v{m, ri) = [E(nh) — E(mh)]/h 

= {nu — mk) I Ejk[m + 6{n — fri)]dd, 
Jo 

by Taylor's formula with integral form of remainder term. This 
is a mean value between the frequencies N(n, r) and N(m, r) 
of the two terms having Tk — nk — nik in the series (18) for the 
two orbits. The correspondence principle of Bohr resulted in the 
assumption that the radiation emitted would be like that of a 
set of simple oscillators whose g-coordinate has the mathematical 
representation 

(19) q(m, ri)e2viv^m'n)t, 

where q{m1 ri) is the corresponding mean value 
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q(m, n) = I Q[m + 6(n — m), rjdO, (r* = nk — m*), 

between the coefficients Q(?z, r) and Ç(m, r ) . By means of this 
further rather doubtfully justifiable hypothetical specification 
of the character of the radiation, theoretical polarizations and 
intensities of spectrum lines were calculated whose agreements 
with observed data were close enough to be surprising. This 
situation is, however, a physical one of rather refined delicacy 
for a mathematician to discuss, and I will emphasize further 
therefore only the important result that corresponding to every 
coordinate q of the atomic dynamical system the theory gave a 
matrix of elements of the form (19) for which elements situated 
symmetrically with respect to the principal diagonal are con­
jugate imaginaries. Such a matrix is called by the mathemati­
cians a Hermitian matrix. 

6. The Theory of Schrödinger. The quantum theory as pro­
posed by Schrödinger is based upon a very interesting extension 
of the analogy of Bernoulli between optical paths and mechan­
ical trajectories described near the end of §4 above. His argu­
ment can be phrased as follows. It has been seen that the ex­
tremals for the integral (13) in the optical field are the same as 
the mechanical trajectories defined by the action integral (12) 
when the light-velocity u is given by equation (14). In an opti­
cal field, however, the theory of geometrical optics is not suffi­
cient to explain minute optical phenomena, such as interfer­
ence and diffraction. To have a satisfactory theory of these 
latter phenomena, it has been found necessary to associate with 
every field of light rays solutions of the wave equation 

(20) WXX + Wyy + WZZ = Wtt/U2. 

It seems reasonable, therefore, in the effort to explain minute 
atomic mechanical phenomena, to associate with mechanical 
trajectories solutions of the wave equation with the value of u 
defined by (14). 

The constant C now assumes a more important role. In order 
to determine its value, Schrödinger made two assumptions. The 
first was that the frequency v of the wave to be associated with 
the moving particle should be related to the total energy E of 
the particle by the equation E = hv, as de Broglie had earlier 
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suggested; the second was that the group velocity of the one-
parameter family of waves associated with the particle for dif­
ferent values of E should be equal for each E to the velocity v 
of the particle itself. I t would take too long to explain here the 
mathematically somewhat vaguely formulated definition of 
group velocity. For mathematicians who may be interested the 
best discussion which I know of is that of Fraenkel.f The result 
of the two assumptions is that C = E, so that the final value for 
•u2 in the wave equation is 

u2 = E2/[2m(E - V)]. 

If we make the substitution 

(21) w = \[/(x, y, z)e-2^Elh)t 

in equation (20), in order to determine the wave functions 
which have frequency v=E/h, we find the new equation for \f/ 

(22) *xx + fyy + f„ + ^SMTTKE - V)/h2 = 0. 

This is the fundamental equation upon which Schrödinger based 
his theory of the mechanics of an atom. 

With each state of motion of a dynamical system having a 
potential function V(x, y, z) there is to be associated a real or 
imaginary solution \[/(x, y, z) of the wave equation (22) which 
has continuous first and second partial derivatives everywhere 
in x^s-space, which vanishes at infinity, and which furthermore 
has first partial derivatives xf/q with respect to the coordinates 
q = x, y, z such that the products r2\f/q are bounded, where r2 

= x2+y2+z2, as is customarily assumed in the potential theory. 
The determination of solutions \p with these properties is what 
the mathematicians call a boundary value problem, the param­
eter in equation (22) which they would usually denote by X 
being E. For the mechanical system of the hydrogen atom, for 
example, it turns out that the only negative values of E for 
which the problem has solutions form a denumerable infinity 
JEI, E2, • • • , and these are precisely the energies of the Bohr 
stationary states. Thus the Schrödinger theory singles out 
automatically the possible energy states for the electron, which 
in the Bohr theory had to be specified by the special assumptions 
Ji = Uih. 

t Einführung in die Welknmechanik, p. 24. 
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To every value En there corresponds a finite number of solu­
tions 

of the wave equation (22), and these solutions can be normed 
and orthogonalized so that 

I yprtPrfdxdydz = 1 , I tynu^dxdydz = 0, (m ^ n), 

where ^n* is the conjugate imaginary of \{/n and the integrals here 
and in the following equations are taken over the whole of space. 
In accord with analogies in electro-magnetic theory it was 
further assumed that the radiation emitted when the system fell 
from a state of higher energy En to one of lower energy Em 

would be that of a simple oscillator with coordinates q = x, y, z 
of the form 

(23) I qWmWrfdxdydz, 

where wn* is the conjugate imaginary of wn. The expression (23) 
has the value 

(24) q(m, n)e
2iri<iEn-E™)tlh, 

with 

q(my n) = I q \pm\p^dxdydz. 

The assumptions of the theory therefore lead automatically to 
a matrix of elements (24) of the same form as that which arose 
from the Bohr theory. 

Mathematically, the crucial part of the Schrödinger theory is 
the determination of the characteristic numbers En of the 
boundary value problem associated with the wave equation 
(22) and their corresponding characteristic functions \J/n. The 
methods used are those of separation of variables. Theore­
tically there is an interesting contact at this point also with the 
calculus of variations. For the boundary value problem is what 
the mathematicians call self-adjoint, and every such problem is 
closely associated with a problem of the calculus of variations. 
For the simple 3-dimensional case of the Schrödinger theory dis-
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cussed above this latter problem is that of finding in the class 
of functions xf/ satisfying the condition 

I \p2dxdydz = 1 

one which minimizes the integral 

I = f bx + <W + ^ 2 + VSMTW/h2]dxdydz. 

This is an isoperimetric problem of familiar character whose 
extremals have the differential equation (22). The relationship 
between boundary problems and such problems of the calculus 
of variations has had an elaborate development. It was studied 
for the special case of minimal surfaces by Schwarz, and for 
more general cases by Hubert and many others. 

The calculations of the quantum theory of Schrödinger ap­
plied to the hydrogen atom and other cases gave theoretical re­
sults which for the most part agreed as well or better with ob­
served data than those of the earlier theory of Bohr. Sommer-
feld's treatment of the fine structure gave, however, a less 
satisfactory formula, according to his own statement.! The 
method used in all cases was to substitute the potential func­
tion V of the system in the wave equation, then to determine 
the energy levels and characteristic functions for the boundary 
value problem, and finally to analyze the radiation emitted by 
the oscillators (24). What could not be accomplished directly 
could sometimes be attained by the use of perturbation methods 
similar to those used in other mechanical theories. 

In closing this section I wish to emphasize again the fact 
that in the Schrödinger theory, as in the preceding theory of 
Bohr, the final result was a matrix of elements of the form (24) 
which characterized the emitted radiation. Furthermore, for 
solutions of the form (21), the equation (20) or (22) is equivalent 
to the new equation 

(25) ihwt/(2ir) = - h\wxx + wyy + wzz)/(Sw2m) + Vw, 

as one readily sees by eliminating E by means of the equation 

wt = — 2iriEu/h. 

t Atombau und Spektrallinien, Wellenmechanischer Ergânzungsband, pp. 
132 ff. 
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If each momentum p in the Hamiltonian function 

(26) H(q, p) = {pi + p^ + pi)/{2m) + V 

is replaced by the operator p = — (ih)/(2ir)'d/dq1 where q is 
the corresponding coordinate, and if the resulting operator is 
designated by H(q, — (ih)/(2T) -d/dq), then equation (26) is 
expressible in the form 

ih dw / ih d \ 

~2r ~~dt ~ V ' ~2T Vq)W' 

These remarks have significance for the description in the next 
section of the more recent forms of the quantum theory. 

7. Present Forms of the Quantum Theory. The recent forms 
which the quantum theory has taken are not easy to describe in 
brief fashion because they involve matrix algebra and mathe­
matical theories of probability as well as much of the mathe­
matics which has been discussed in preceding pages. I should 
like to try nevertheless to give my fellow mathematicians some 
idea of the contacts which still remain with the calculus of 
variations, in spite of the fact that my experience with the newer 
theories is even more restricted than with the older ones. 

The first step toward the newer point of view seems to have 
been taken by Heisenberg. Because of the artificial character 
of the mechanical mechanisms involved in the Bohr theory, 
or perhaps one should say the non-mechanical mechanisms, he 
proposed to cast those aspects of the theory aside completely 
and to begin with the matrices (24) or (19) themselves which 
appear as the prime results of the theory of Schrödinger as 
well as that of Bohr. To the physicist this seemed a very bold 
proposal, perhaps because the notions of matrices and the 
matrix calculus are not a part of his usual mathematical kit. 
But to the mathematician Heisenberg's proposal would, I think, 
seem a natural one in view of the results of the preceding 
theories. The lines of the spectrum have a double or matrix ar­
ray of frequencies which can be regarded as caused by a similar 
array of oscillators. What then are the properties of the matrices 
of oscillators which characterize such spectra? It is this ques­
tion which would have stumped the mathematician, and it is to 
Heisenberg's unusual combination of physical experience with 
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mathematical instincts that an answer has been found which 
seems in many respects to be successful. 

Heisenberg's mathematical postulates are in part simple 
enough when once they have been formulated. He proposed to 
replace each coordinate q and momentum p of a classical me­
chanical system by a Hermitian matrix of the kind described 
in equation (24), and to replace the energy function H(q, p), 
expressed as a power series in the p's and q's, by the matrix de­
fined by the same series when the matrices for p and q are sub­
stituted. If a suitable interpretation could be found in matrix 
theory for a Poisson bracket (6) then the differential equations 
of the system could be expressed in the form 

(28) ^=(qk,H), ^=(Pt,B), 
at at 

analogous to the equations (5). 
Heisenberg determined the interpretation of the Poisson 

bracket for his matrix theory by a limiting process which had 
been used in the so-called correspondence principle of Bohr and 
which I somewhat arbitrarily avoided in the preceding pages. 
The method of Dirac is more accessible to the mathematician. 
Dirac listed the rules of computation for Poisson brackets as 
defined for the classical theory and found an equation pointing 
to the fact that he could make them valid for matrices also by 
assigning to the bracket (ƒ, g) for two matrices ƒ and g the value 
c(fg — gh)> where c is a constant. The difference f g — gh is not in 
general zero for matrices. When it is so the matrices are said to 
"be permutable. It turns out that the value of c must be — 2iri/h 
in order to make the results of the theory agree with experiment. 

In classical mechanics the Poisson brackets for the coordinates 
and momenta have the simple values 

(?*> <li) = °> (Ph, pi) = 0, (qh, pi) = hi, 

where ökk = l and 8^ = 0 for k^l. Hence by analogy, and on ac­
count of the definition of the Poisson bracket, the matrices q, p 
of the quantum theory should satisfy the relations 

qkqi — qiqh = 0, pkpi — pipk = 0, 

(29) qkpx - piqk = mkl/(2ir), 

ihqk/(2T) = qkH - H9k, ihpk/(2w) = pkH - HPk, 



220 G. A. BLISS [April, 

where the dots indicate time derivatives and the last two equa­
tions are the equations (28) with the values of the brackets sub­
stituted. For a particular dynamical system the energy matrix 
H(qy p) is the classical energy function of the system with 
matrices q, p in place of the classical coordinates and momenta. 
These are the fundamental equations of the quantum theory in 
matrix form. 

A canonical transformation is defined by a matrix S whose in­
verse S~l is the matrix formed from S by replacing all its ele­
ments by their conjugate imaginaries and then turning the 
matrix through 180° on its principal diagonal as axis. In math­
ematical language S~l is the conjugate transpose of 5. If such 
a matrix is at hand, then the transformation P = SpS~l, Q = 
SqS~x takes every set of matrices p> q satisfying equations 
(29) into a new set P , Q satisfying equations of the same form. 
Such transformations were used by Heisenberg to find solutions 
of equations (29). When, for the case of the hydrogen atom for 
example, a canonical transformation had been found which took 
the energy matrix H into a diagonal matrix E, the elements 
E(n, n)=En in the principal diagonal were the energy levels of 
Bohr, and the frequencies of the elements of the matrices q> p 
turned out to be the radiation frequencies 

v(m, n) = (En - Em)/h. 
This matrix calculus of Heisenberg has been given a different 

form and has been supplemented by a probability interpretation 
which is based upon analogs of well known algebraic proper­
ties of Hermitian matrices. A vector \p = (\pi, • • , ̂ n) of complex 
numbers in n dimensions is said to be normed if xl/kfa* — 1, where 
\pk* is the conjugate imaginary of \pk- I t is orthogonal to a second 
such vector \p' if ipk^k' = 0. An ^-dimensional Hermitian matrix 
m transforms every vector \{/ into another mx// of the same type, 
and has a set of n normed and orthogonal vectors ^{m'), each 
possessing a real number m' such that m^(mf) = mr^{m'). The 
vectors ^f(m') are called the characteristic vectors of the matrix, 
and the numbers m' are its characteristic number s.\ An arbi­
trarily selected vector \p is expressible linearly in terms of the 
characteristic vectors in the form 

\p = X^(w0c(w /)> 

f They are analogous to the "eigenfunctions" and "eigenvalues" of Dirac. 
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where the sum is taken for all the characteristic vectors. If \p 
is normed, then it is readily provable that 

*** = 2>(w')**0»') = Z I c(m') | 2 = 1, 
an equation which suggests the possibility of interpreting the 
real numbers \c(mf) |2 as probabilities. These results are stated 
here for n-dimensional vectors and matrices because it is that 
case which is familiar to most of us. In the quantum theory the 
range of the subscript k and of the characteristic values m' may 
be a continuum, or a combination of a discrete and a continuous 
range, or of still more general character. For these other ranges 
the matrix theorems are usually not proved but are assumed to 
hold by analogy. 

In the presentation of the theory as given by Dirac the 
matrices of Heisenberg are replaced by much more general 
linear operators which operate on symbols \(/ representing the 
possible states of motion of the dynamical system under con­
sideration. Each state is represented not only by its symbol \p 
but also by cxj/, where c is an arbitrary complex number, and by 
a symbol \f/* to which xf/ is related as a vector to its conjugate 
imaginary. All linear combinations of symbols for states, of the 
form Ci\[/i+C2\f/2j also represent states. For any two states \//i and 
\f/2 a scalar product ^i*^2 is postulated whose value is a complex 
number such that ^2*^1 = (^1*^2)*. If this number is zero the 
two states are said to be orthogonal. A symbol for a state may 
be normed so that \f/*\// = l by multiplying it by a suitable com­
plex constant. One easily sees that the absolute value of this 
constant is uniquely determined but its amplitude or phase is 
arbitrary. 

At each time t there is associated with each coordinate of the 
dynamical system a linear operator q which transforms each 
state \p into another and which has properties like those of a 
Hermitian matrix. The operator q has a system of normed and 
orthogonalized characteristic states ^?(q') with characteristic 
numbers q' such that every state \[/ is expressible in the form 

* = X>(<z'W), 
a' 

by analogy with the matrix theory. If the symbol \J/ is normed 
then one finds readily that 
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(30) EksOl1 = i. 
q' 

The fundamental idea of the probability form of the quantum 
theory is now that when an observation is made at the time / to 
determine the value of a coordinate of the mechanical system in 
the state \p the result is not necessarily unique. The values which 
may be found for the coordinate are the characteristic numbers 
g' of the operator g, and the probability that a particular value 
g' will be found at the time / for the state ^, is the term \c(q') |2 

of the sum (30). The classical case would be the one for which 
q has a single characteristic number q' and behaves like a 
Hermitian matrix with all elements in the principal diagonal 
equal to qf and all other elements equal to zero. Such an operator 
has but one characteristic number g', and all states if/ are 
characteristic states, so that a measurement of q always gives 
the value g ' a s a certainty. 

The momenta of the mechanical system are similarly repre­
sented by operators p, and the energy by an operator which is a 
function H(q, p) of the operators q and p. The equations which 
characterize these operators for a particular mechanical system 
are the equations (29) of Heisenberg for reasons similar to those 
described above in deducing them. It is provable that if two 
operators p and q satisfy the third of equations (29), then every 
real number qf is a characteristic number for g, and similarly for p. 
Moreover, the set of permutable operators gi, • • •, qr has normed 
and orthogonal characteristic states >F(g') = ̂ (q(, • • • , g/) in 
common, one and only one of which corresponds to every set 
of real numbers (q{, • • • , g/ ), and in terms of which every 
other state is expressible in the form 

The integral is taken over the whole of the r-dimensional qf-
space and \j/(q'', /) is a function of gi', • • • , g/ , t, which is said to 
represent \{/. The state \p does not change with the time, but its 
representative must do so, since the operators q and their char­
acteristic states ty are changing. When x// is normed it follows that 

1 = ƒ I Hq', 0 |W = ƒ riff, WW, t)dq'. 
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If an observation to determine all of the coordinates q is made 
at the time t upon a system in the state ^ the possible values for 
the coordinates are the characteristic sets (g/ , • • • , q/), and the 
probability that a set will be found in the volume element dqr is 
|^(g', t) \2dq', where q' — {qi, • • • , qr') is a point in dq'. 

I t is important and interesting to note that the representation 
\p(q', i) of the states which are possible for a given dynamical 
system are precisely the solutions of Schrödinger's wave equa­
tion in the form (27). For it is provable from the equations (29) 
that the results of operating with qk, pk, or H upon a state with 
representative ip{qf, t) are, respectively, the states represented 

IT oqi lit ot 

provided that the phases of the normed characteristic states 
ty(q') are suitably chosen. But since H is also expressible in 
terms of the q's and p's it follows then readily that 

ih d / ih d \ 

where the operator on the right is formed by replacing in H(qy p) 
each of q and p by its value as an operator. Thus by reasoning 
quite different from that of Schrödinger we are led again to the 
wave equation (27). 

A mathematician should perhaps not venture to discuss the 
physical reasons for things, but I think I owe to my mathe­
matical hearers an effort to explain why the quantum theory 
has adopted a probability aspect. There are a number of reasons, 
but I shall speak of only one. The Schrödinger theory provided 
functions w(q, t) which belonged to the stationary states of an 
atom but it did not at tempt to describe the mechanical character 
of the atomic system itself except in its identification of the 
group velocity of a one-parameter family of waves with what 
would ordinarily be the velocity of a mechanical particle. Such 
a family or packet of waves may have a resultant amplitude 
different from zero only in a limited portion of space whose ex­
tent may increase or contract as it moves. The coordinates and 
momenta of such a packet taking the place of the mechanical 
particle would be to some extent uncertain. In the general 
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theory this uncer ta inly corresponds to the fact that the mo­
menta q are never permutable with the coordinate operators 
p. Operators have characteristic states in common in general 
only when they are permutable, and the only states for which 
the probabilities described above for a particular operator q or 
p are unity, and the results of observations therefore certain, are 
the characteristic states of the operator. It follows, therefore, 
that in general there is no state for which the coordinates and 
momenta are determinable simultaneously with certainty. The 
mean square deviations Aq, Ap of a corresponding coordinate 
and momentum from their mean values can be calculated at 
least in simpler cases, and it has been shown tha.tàqAp*îh/(2w), 
which is the inequality expressing Heisenberg's famous un­
certainty principle. 

This is as far as we shall have time to go in the discussion of 
the various modifications of quantum mechanics. In the founda­
tions of the operational or matrix form of the theory the influ­
ence of the calculus of variations remains only in the preserva­
tion of the notions of canonical equations and transformations, 
and in the boundary value problems connected with the wave 
equation of Schrödinger. But other equally interesting math­
ematical domains have been freely called upon to contribute 
their quotas. An abstract operational calculus, a kind of general 
analysis of operations, with an associated theory of probability, 
seem to be requisites, and the details of the applications of 
these theoretical mechanisms to the special cases so far studied 
have also great mathematical interest. This can be said in spite 
of the fact that at the present time the pure mathematician, in 
his effort to understand the theory, must plough steadily for­
ward oblivious to a multitude of detailed questions of math­
ematical accuracy. In view of the success which the theory seems 
to have had it is not too much to hope that in the end all such 
questions may be satisfactorily answered or avoided, and it is 
even possible that the pure mathematician may contribute a 
valuable mite to this happy result. 
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