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T H E USE OF FRACTIONAL INTEGRATION AND 
D I F F E R E N T I A T I O N FOR OBTAINING CERTAIN 

EXPANSIONS IN T E R M S OF BESSEL 
FUNCTIONS OR OF SINES 

AND COSINES 

BY W. O. PENNELL 

1. Introduction. Under certain conditions fractional integra­
tion or differentiation of a sine function will lead to a Bessel 
function and vice versa. Likewise the fractional integration or 
differentiation of a cosine function will lead to Struve's function. 
I t follows, when the process is legitimate, that a known expan­
sion in sines can be converted to an expansion in Bessel func­
tions, or a known expansion in Bessel functions can be converted 
to a sine expansion, by the simple expedient of term-by-term 
fractional integration or differentiation. 

2. Fractional Integration and Differentiation of Sine and 
Cosine. Fractional integration* with the Heaviside operator p 
is given by the equation 

(x - X)""1 

Too" 
where v>0. Fractional differentiation* is given by 

J
%x (ft X)1"-1 

' fO)dk9 
o T(v) 

( 2) ,,ƒ(*) = ' / (X)dX, 
dxb Jo T(c) 

where J>>0 , 0 < c < l , & i s a positive integer, and v = b — c. If (1) 
is applied tof(x) =xn the result is 

T(n+ l)xn+v , 
(3) p-»xn = — — — • , (y > 0, n > - 1). 

T(n + v+ 1) 
If (2) is applied to xn, 

T(n+ i)xn~v 

(4) p>x» = — — , (y > 0, n > - 1). 
T(n — v + 1) 

* For bibliography on fractional integration see H. T. Davis, The applica­
tion of fractional operators to functional equations, American Journal of Mathe­
matics, vol. 49 (1927), pp. 123-142. 



116 W. O. PENNELL [February, 

If n — v + 1 is zero or a negative integer, the right hand side of 
(4) is to be interpreted as the limit which that expression ap­
proaches as v approaches the value which causes n — v + 1 to be­
come zero or a negative integer. 

I t follows from (3) and (4) thatpvxn = T(n + l)xn-v /T(n-v+l) 
for all values* of v, for n > — 1. 

By applying process (3) or (4) term by term to the power 
series representing the sine or cosine we get 

(5) p~v+1'2 sin ax1'2 = I — J * • * / W ^ * * 1 ' 2 ) , 

£j / - l /2 / 2 \ v-l 

(6) £-*+i/2 cos ax1!2 = • I — ) x^Vm^ax1'2), 

whereHv denotes Struve's function of order v. That the term-by-
term fractional integration and differentiation is legitimate may 
be shown as follows. Since the power series for sin ax112 is uni­
formly convergent for all finite values of x it may be written as 

» (ax112)2"-1 

(7) sin ax^2 - £ ( - l ) - i ±- J-— + Rn, 
n - 1 , 2 . . . ( 2 « - 1 ) ! 

where \Rn\ < €, € being chosen arbitrarily small and positive, and 
corresponding to it is a positive integer n, independent of x. By 
applying process (1), fractional integration, to both sides of (7), 
we obtain 

* (ax112)2"-1 

p-v+i/2 s i n axi/2 = ] £ ( - l)*-ip->+Wl 1 J- p-v+V*Rn. 
n-1.2.. . ( 2 » - l ) i 

But 
exv~l/2 

p~^2Rn | < ' 
T(v + « 

and, since v^ + 1 / 2 , this term can be made as small as we like, 
for any finite value of x. 

Fractional differentiation, shown by (2), is fractional integra­
tion followed by ordinary differentiation. Since the fractional 
integral of sin ax112 or cos ax112 leads to a Bessel function of the 
first kind or Struve's function, and since the power series repre-

* Including y=0, as p° will be defined as the identical operation. 
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senting these functions may be differentiated term by term, it 
follows that the process leading to (5) and (6) is legitimate for 
all real values of v, positive or negative. 

By transposing the operator in (5) and (6) we get 

(8) pv~w(— J TrUHvl*Jv{axli*) = sin ax1'f\ 

(9) ^ 1 / 2 ( — ) ^ ' V ' ^ O * * 1 ' * ) = 1 - cos ax1/2. 

3. Fractional Integration of Fourier-Bessel Series. This series 
for f{x) is given by 

00 

(10) ƒ ( * ) = Z amJvijmX), (0 < X < 1, V ^ - J ) , 
m=l,2' • • 

where 

(11) am = r 2 f \fÇh)Jv(jn*)d\, 

and where j m is the rath positive root of Jv(x) = 0. From (10), 

oo 

(12) *»'*ƒ(**/*) = Z «««"'VrO'-*1"). 
m = l , 2 ' • • 

It can be shown* that (12), with certain restrictions on f(x), is 
uniformly convergent in the interval 0 < x < l , for v^O. The 
series may, therefore, be fractionally integrated term by term. 
We get by applying process (8) to (12) 

^i/2^/2y(^i/2) = _ L J2 aj—) 'sin (/'m*1'2), ( J ^ i ^ O ) . 
7T1/2 m - 1 , 2 . . . V m / 

If we put 

then 

(13) /(x1 '2) = x-'^p-'+v^ix1'2), 

and 
1 * / 2 \ !-' 

(14) </>(#) = — 2^ M ~ ) sin(ymx), 
7T1M m = l , 2 . . . \JmV 

( U "^ o, o < x < i), 
* See Watsofi, Theory of Bessel Functions, pp. 594-615. Also C. N. Moore, 

On the uniform convergence of the developments in Bessel functions, Transactions 
of this Society, vol. 12 (1911), pp. 181-206. 
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where am is given by (11). The function ƒ (x) is subject to the re­
strictions sufficient for a function to be expansible by a Fourier-
Bessel series. The function <f>(x) is given by (13). If ƒ (a;) —^anx

n, 
a power series, (13) shows that 

T(n/2 + v/2 + l) 
Tp(%) = X X : ;—xn~ v + l . 

r r (» /2 - v/2 + 3/2) 
We have here the expansion of a function in a series of sine 

terms, and the expansion is not periodic. As far as the author is 
aware the expansion (14) has never before been published. 

EXAMPLE. Let us start with the known expansion 

(is) * - i -^rT^' (>*-*, os * < D . 
m=l ,2 • • . JmJv^l\Jm) 

Substituting #1/2 for x, multiplying both sides by xvl2, operating 
on both sides by £"~~1/2, and finally replacing xV2 by x, we may 
write (15) in the form 

oo J 
(16) x = 52 sinjmx, 

where 0 ^ x < l , 0 ^ v ^ l / 2 , and j m is the wth positive root of 
Jv(x)=0. 

4. Fractional Integration of Fourier Series. Let us consider the 
Fourier series 

* r nirx mcx~\ 
(17) f(x) = iio + Z^ ansin h &w cos , 

n = l , 2 . . « L C C J 

where 
1 r c nirx 1 r c ^7r# 

an = — I f(x) sin dx, bn = — I ƒ(#) cos d#. 

In (17), replacing # by x1/2 and operating on both sides by p-"+lf2
f 

we find 
%v—1/2 co /2c\v~l 

p-,+mf{xm) = |6 0 + X W - ) *'/2 
r ( " + î) n-1,2... W / 

•I aj,l-—-) - bnHPl ) \ + £ bn-
(18) -rr . . . r(v + j) 

/(0)x"/2-1/2 /7A--1 n0)x" /2~1/2 /2c\"~l °° 1 

roitjr+iitfoxi*) = •"ƒ + TTW - ) 23 —-
[ /m-xll2\ /mrx1,2\~] 
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where/(O) = J [ƒ( + 0J + ƒ( — 0) ]. Since the integral of a function 
defined and satisfying Dirichlet's conditions in a given interval 
is equal to the term-by-term integral of the corresponding 
Fourier series, it follows that the fractional integral of the func­
tion will equal the term-by-term fractional integral of the 
Fourier series. This is so because fractional integration of order 
v —1/2 (see equation (1)) is equivalent to multiplying each term 
by (x — A)"~"3/2/r(z>— 1/2) and then integrating the resulting series 
term by term. The above process which results in (18) is there­
fore legitimate when v > 1/2, that is, for fractional integration. 

When *><l/2 we have fractional differentiation. Suppose 
- 1 / 2 <v < 1/2 ; then p-v+w maybe written p-v~ll2p, which repre­
sents first differentiation and then fractional integration. Hence 
when the Fourier series is of such a character that it can be 
differentiated term by term, then the process p~p~112, which is 
fractional integration, can be applied to the resulting Fourier 
series. That is, the original Fourier series under these conditions 
can be fractionally differentiated and the result will equal the 
fractional derivative of the function represented by the series. 

A known sufficient condition for term-by-term differentiation 
of a Fourier series in an interval — a g x ^ a is that ƒ (x) shall have 
a derivative and shall be finite and continuous in the interval, 
and have only a finite number of maxima and minima, and that 
/ ( a ) = / ( —a). Similar criteria will apply for — 3 / 2 0 < —1/2. 
Here p~v+li2 may be written p~v~zi2p2 and if the Fourier series 
may be differentiated twice, the fractional differentiation is 
legitimate and similar reasoning holds for lower values of v. Let 

x-vl2p-v+U2f(xll^ = 0(^1/2) # 

Then (18) becomes when x is substituted for x1/2 

m)xv~i 

(19) 0(a) = — 

/ley-1 A 1 r /nirx\ /mrx\l 

which is a generalized Schlömilch expansion of a function. For 
the validity of this expansion, the following conditions are 
sufficient. 
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(1) The function </>(#) satisfies the condition that if 
f(x1/2) =pv-v*xvl2<t>{x112), then f(x) satisfies Dirichlet's conditions 
sufficient for representation of f(x) by a Fourier series. 

(2) J > ^ 1 / 2 , provided p~v+l>2 is taken as the identical opera­
tion when j> = 1/2. 

(3) Or, if l/2-n<v<l/2-ln-l), (n = l, 2, 3, • • • ), the 
function f(x) satisfies the known conditions that fn(x) will 
equal the corresponding Fourier series when differentiated term 
by term n times. 

(4) The expansion is true for —a<x<a. 

If f{x) is represented by a Fourier sine series in the interval 
0<x<c, equation (19) becomes 

/2c\v~l " an fmrx\ 
(20) *(*) = *u*( - ) £ ~ / , ( — ) • 

\T/ n - 1 . 2 . . . W-1 \ C / 

If f(x) is represented by a Fourier cosine series in the interval 
0<x<cy equation (19) becomes 

f{0)xv~l /2c\v~l * bn /mx\ 

r(^ + t) \ir/ n-1,2... »" * \ C / 
where 

2 /^c ^7TX 2 rc tiTX 
an = — I f(x) sin d#, 6n = — I f(x) cos d#. 

Hence <t>(xll2)=x~vl2p~v+ll2f(x112) and the same limitations hold 
as regards/(x) and the values of v apply as for (19). 

EXAMPLE. In (20), let us suppose t h a t ƒ (x1/2) = 1 if 0<x<c> 
and f(x112) = - 1 if c<x<2c. Then 

£—v/2%v—1/2 ^v/2—1/2 

<b(x1'2) = X-V^p-V+1'2 = = ; 

andan = 4:/(?nr) for n = L, 3, 5, • • • , and an = 0 for w = 2, 4, • • • . 
Hence 

(o < x < G, ^ i ) . 
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Proceeding in exactly the same manner but starting with 
fix1'2) = x ^ 2 / r ( 3 / 2 ) , we obtain 

* /2c\v 2Y{y + 1) /mrx\ 
(22) *> = - E ( - 1 W - ) -JA— ) , 

(0 < X < C} V^O). 

5. Examples of Fourier Series with the Derived Schlömilch 
Series. 

x sin ax * # sin nx 
(23) — = £ ( - l ) - 1 ^ -> 

2 sin ax n-1,2-. ^ — 0 
(— x. < # < x, a not an integer). 

Tra1-" A nJJnx) 

2 sin ax n-i,2- • • (^2 — a2)nv~x 

( — 7T < X < X , ï> ^ | ) . 

7T cos ax 1 JL a cos nx 
(24) — = - + Z (-!)"• ' ^ 2 sin ax 2a n - i X • • % a2 — n2 

(— TT ^ x ^ Tj a not an integer). 

ivHv{ax) " 1 
^—1-= X ( - 1 ) - ff,(»*), 

2a" sin ax n=i ,2 • • • (a2 — n2)nv~l 

(— x ^ # ^ x, y ^ - i ) . 

x * cos 2^# 
(25) — sin * = * - Z <w„ , ^ (O^X^T). 

4 w=i,2... (2n- 1 ) ( 2 » + 1 ) 
1 °° 1 

J,(*) = Y) HJ2nx) , 
2 - V „_Î7... (2» - 1 ) (2»+ l ) ^ " 1 

(0 ^ x ^ x , y ^ - | ) . 

2 A » 
(26) eiax = — 2^ (1 ~~ c o s mre%air) sin ##, 

0 — a2 

(0 < x < x, a not an integer), 
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x*-1 / 2 y-1 . / 2 y - 1 

— — ( — ) Hp(ax) = — il — 1 Jv(ax) 
h) \ a / \ a J *xl*?{v + i ) 

2 * n ( 2 y-1 

_| \ n _ c o s nire
iaT)[ — ) JJnx), 

7T « = i > 2 . . . n2 — a2 

where 0 < # < 7 r and J > ^ 1 / 2 . 

(27) ƒ ( » = a if 0 < x < c/2;f(x) = 0 if * = c/2; 

ƒ(#) = — a if s/2 < x < 6:. 

4a - 1 2(2^ - 1)TT 

— 21/ s n i x =ƒ(#), (0 < # < c), 
7T n = l , 2 - . . 2W — 1 C 

4a * 1 r c T " 1 T2(2^ - 1)TTX"] 

^ n=1̂ ... ^~T)L(2^~~iy^J 1 c J 
ax' .v-i 

, (0 < x ^ c/2), 

, (c/2 â K M U ) . 

rfr + i) 
ax"'1 - 2ax~v{x2 - c2/4)"-1/2 

rfr + i) 
I t will be noted that the method described in this paper of 

obtaining the Schlömilch series from a corresponding Fourier 
series places no restriction on the upper value of v. In such litera­
ture on Schlömilch series as the author has seen, the upper 
limit of v is I > < 1 / 2 , that is, the order of the Bessel or Struve's 
function in the series < l / 2 . 

ST. LOUIS, MISSOURI 


