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HEXAGONAL SYSTEMS OF SEVEN 
LINES IN A PLANE* 

BY LOUISE D. CUMMINGS 

1. Introduction. This paper concerns the determination of the 
non-equivalent systems of seven real lines in a plane when no 
three of the lines are co-punctual, and the investigation is lim­
ited to that subdivision of the problem where, in a system of 
seven lines, some six form a convex hexagon. I t is shown that 
exactly eight non-equivalent arrangements exist, and incident­
ally the integers showing the numbers of polygons of 3, 4, 5, 6, 7 
sides which occur in each of the eight systems are tabulated. 
The method, developed by Professor H. S. White, of the unique 
characterization of a line by means of the contiguous line-seg­
ments in a system, has been used to determine a "mark" for 
every line in the eight systems. The seven marks of a system 
are employed to prove the non-equivalence of systems and to 
determine the substitution connecting two equivalent systems. 

2. Basic Hexagon. Six lines in a plane, no three in any point, 
form 30 segments, and for the hexagonal subdivision here con­
sidered, divide the plane into one hexagon, six triangles, and nine 
quadrilaterals. For easier visualization, an irregular hexagon with 
sides produced indefinitely and with all 15 intersections in the 
finite plane is considered. The 30 segments of the six lines may 
be assigned to three classes, namely, 6 primary, separating the 
hexagon from the triangles, 12 secondary, separating the triangles 
from quadrilaterals, 12 tertiary, separating, each, two quadri­
laterals. The nine quadrilaterals are separable into two types: 
(1) six quadrilaterals with sides two adjacent secondary seg­
ments and two adjacent tertiary segments, (2) three quadrilat­
erals with all sides tertiary segments. The 30 segments separate 
into five continuous broken lines as follows : the 6 primary seg­
ments bound the hexagon, the 12 secondary segments surround 
the six triangles, and the 12 tertiary segments separate into the 
three boundaries of the three quadrilaterals of the second type. 

3. Notation and Method. When, in a set of seven lines, any six 
form a hexagon, that hexagon is utilized as unique initial figure. 

* Presented to the Society, October 31, 1931. 
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The six vertices in order on the hexagon are marked 1,2,3,4, 5, 6. 
On the broken line of the secondary segments insert the letters 
a, 6, c, d, e, ƒ, in order, a being the vertex of the triangle whose 
base is the primary segment 12. Mark the three intersections of 
the three pairs of opposite sides of the hexagon L, M, N, in the 
same cyclic order, L being the intersection of the pair of oppo­
site sides 12 and 45. Mark the six intersections of the seventh 
line or secant as p, q, r, s, t, u. Name the six lines forming the 
hexagon h, h, h, h, h, U and the seventh line h. Two sub­
divisions of the problem are considered : Case I and Case IL 

CASE I. The seventh line crosses the hexagon, intersecting two 
primary segments, two secondary segments, and two tertiary 
segments. In the hexagon the two primary segments may be (i) 
adjacent sides, (ii) alternate sides, (iii) opposite sides. 

CASE I I . The seventh line lies outside the hexagon and inter­
sects (i) six tertiary segments, (ii) four tertiary and two sec­
ondary segments, (iii) two tertiary and four secondary seg­
ments. 

CASE I (i). The seventh line enters the hexagon across a tri­
angle, for example the triangle a l2 , and cutting the segments 
a l , 12, emerges from the hexagon across the consecutive side 23 
and must cut the segments 3&, cL, fM. In the pentagonal sub­
division of seven real lines in a plane, H. S. White has em­
ployed a unique mark for any secant in a system of lines by 
means of the contiguous line-segments which that secant crosses. 
Two segments are contiguous if they have a common extremity, 
and in determining the mark of a secant contiguous segments are 
written so as to form a continuous broken line. For example the 
line h crosses the contiguous segments a l , 12, 23, 3b and two 
separate segments cL,fM, and the mark for the line Z7 is written 
h(al23b-cL>fM) or for brevity Z 7 ( 4 - l l ) . The line Z7 inter­
secting two consecutive sides of the basic hexagon divides the 
hexagon into a triangle and a heptagon. In this heptagon the 
seventh line and the initial six lines now occupy similar roles, 
each being a side of the heptagon, hence we know, without 
further examination, that all seven lines have the same mark 
(4-1-1). This system designated as system (1) is identified by 
the characteristic (4-1 • l ) 7 . 
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CASE I (ii).* The seventh line or secant enters the hexagon 
across the segments a l , 12 but emerges across the side of the 
hexagon 34, alternate to the side 12, and entering the triangle 
c34 may leave the triangle across 3c or 4c. The path across 3c is 
unique and the secant cuts the six segments a l , 12, 43, 3c, cL, 
f M and the mark of this line 77(al2-43cL-/Af) is / 7 (3-2- l ) . 
This investigation is concerned primarily with the development 
of a necessary and sufficient test for the equivalence or non-

FIG. 1. System (2) 

equivalence of two systems of seven real lines in a plane, where 
two systems are equivalent if a one-to-one relation exists be­
tween the lines and polygons of the two systems. The line 
/7(3 -2-1) of system (2) cannot be transformed into any line with 
the mark (4-1-1) and therefore system (2) is not equivalent to 
system (1). However, for purposes of comparison with other sys­
tems, it is necessary in some cases to have all seven marks of 
each system and the marks of system (2) consist of four of 
this new kind (3-2-1) and three of the first kind (4-1-1), and 
system (2) has the characteristic (4-1 • l ) 3 + (3• 2• l)4. If the line 

* Figure 1. 
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h crosses the segments a l , 12, 34, 4c into the quadrilateral 
AcMdy two paths of exit are possible, either across the side cM 
adjacent to 4c or across the segment dM opposite to 4c, and the 
two paths must be examined. On the first path the six segments 
cut by the secant are a l , 12, 34, 4c, cM, Mf and the mark of the 
secant is h(al2-34:cMf) = (4, 2). This mark does not occur in 
system (1) nor in system (2) and belongs to a new system (3) 
with the characteristic (5 • 1) + (4 • 2) 2+ (4 • 1 • 1) + (3 • 2 • l)3 . Ex­
amination of the second possible path across 4c gives a system 
(3') with the same characteristic as that derived for system (3). 
A comparison now of the seven marks of these two systems 
determines very easily the substitution S which transforms sys­
tem (30 into system (3), namely, S = (U) (23) (56) (ac) (b) (df) (e) 
(LN)(M)(pq)(ru)(st). 

CASE I (iii). The seventh line crosses that hexagon on two 
opposite sides 12 and 45, and the investigation of all possible 
paths shows the existence of three new non-equivalent systems 
(4), (5) and (6) tabulated below in Table I. 

CASE II (i). The secant crosses six tertiary segments giving 
rise to two non-equivalent systems designated in the following 
table as (7) and (8). In system (7) the three Pascalian points 
L, My N all lie on the same side of the seventh line, and the sev­
enth line crosses the three quadrilaterals of the second type and 
three consecutive quadrilaterals of the first type. In system (8) 
the points Z, My Ndo not all lie on the same side of the seventh 
line, and the seventh line crosses the three quadrilaterals of the 
second type and three alternate quadrilaterals of the first type. 

CASE II (ii). The seventh line crosses two secondary segments 
and then may cross four tertiary segments over two different 
paths, giving rise to two systems (3i) and (32) each of which is 
equivalent to system (3). This result was to be expected since 
in system (3) a second hexagon, including the line Z7, exists, 
which may be used as basic hexagon. If the segments are re­
named with respect to this second hexagon the secant line, now 
hi crosses four tertiary and two secondary segments. 

CASE II (iii). The path of the seventh line across four second­
ary segments and two tertiary segments is unique and gives rise 
to one system (2X) which is equivalent to system (2), a result in 
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agreement with the fact that system (2) contains also a second 
hexagon. 

4. Table of Non-Equivalent Hexagonal Systems. In the follow­
ing Table I, the marks for each of the eight non-equivalent 
hexagonal systems are given and also, incidentally, the actual 
polygonal division of the projective plane, satisfying of course 
the Euler equation 

n2 — n + 2 
*7 + *6 + S5 + *4 + Sz = > 

2 
where Si, the number of polygons of i sides,, is tabulated for 
each of the eight systems. The three non-equivalent systems, 
derived by H. S. White in the pentagonal subdivision of his 
paper,* have been adjoined in Table I for convenience in 
comparison, and are designated here as (9), (10), (11). 

TABLE I 
SYSTEM 

(1) 
(2) 
(3) 
(4) 
(5) 
(6) 
(7) 
(8) 

(9) 
(10) 
(ID 

(6-0) 

1 

5 

3 

(5-1) 

1 

2 
2 

CHARACTERISTICS 

(4-2) 

2 

2 
6 

(4 •1-1) 
7 
3 
1 
2 

Pentagonal Systems 

2 

(3-3) 

2 
1 

1 
3 

(3 •2 • 

4 
3 
4 
2 
4 

6 
2 

1) (2 •2 • 

1 

1 

1 
2 
1 

•2) S7 

1 

POLYGONS 

St 

1 
1 

1 
1 

Si 

1 
2 
3 
5 
4 
5 
3 

3 
4 
6 

St 

14 
13 
11 
12 
8 

10 
5 
9 

12 
10 
6 

53 

7 
7 
8 
7 
9 
8 

11 
9 

7 
8 

10 

5. Properties shown by Table I. The numbers listed for the 
polygonal divisions of the plane for these eight hexagonal sys­
tems agree with the result of this investigation, that the eight 
systems are non-equivalent, and the same fact is true for the 
table of the pentagonal systems. However, a comparison of the 
two parts of the table shows that systems (6) and (10) have the 
same polygonal numbers 4, 10, 8, and hence that equality of 
polygonal numbers is a necessary but not a sufficient condition 
for the equivalence of two systems. The characteristics of these 
two systems, however, show immediately that the two systems 
are non-equivalent. The non-equivalent systems (4) and (10) 
also have equality of polygonal numbers. 

* The plane figure of seven real lines, this Bulletin, vol. 38 (1932), pp. 59-65. 
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6. Conclusion. This method of analysis of straight-line nets by 
the contiguous segments, as herein extended to all the lines in 
the system, regardless of their relation to a pentagon, hexagon, 
or other basal polygon, is applicable to any number n of straight 
lines and is even not restricted to the case that only m = 2 lines 
shall pass through a point. The method furnishes a necessary and 
sufficient test for the equivalence or the non-equivalence of two 
systems of straight lines, and in the case of two equivalent sys­
tems this method simplifies the discovery of the substitution 
which transforms the one system into the other system. 

VASSAR COLLEGE 

A PRACTICAL METHOD FOR T H E MODULAR 
REPRESENTATION OF F I N I T E OPERA­

TIONS AND RELATIONS* 

BY B. A. BERNSTEIN AND NEMO DEBELY 

1. Introduction. In previous papers one of the writers de­
veloped a general theory for the concrete representation of arbi­
trary operations and relations in a finite class of elements, f Let 
p be a prime, and let a mod p denote the least positive integer 
obtained from integer a by dropping multiples of p. Consider 
the function ƒ(x) given by 

(1) f(x) = Co + cxx + • • • + Cp-ix**"1, mod p, 

where x ranges over the complete system of ^-residues 0, 1, • • • , 
p— 1, and where the coefficients £»• are among the ^-residues. 
The general theory is based on the fact that any unary operation 
in a class Koip elements, the operation satisfying the condition 
of closure, can be represented by a polynomial of form (1). But 
when the number of elements in K is large, the calculation of (1) 
by the method of the general theory is very laborious, for the 
work involves, for a class of p elements, the computation modulo 
p of p determinants each of order p—1. For an m-ary operation 
or an ra-adic relation where m > 2 , the calculation of the repre­
sentation by the method of the general theory is very laborious 

* Presented to the Society, April 5, 1930. 
t See the Proceedings of the International Mathematical Congress, 

Toronto, 1924, p. 207, and this Bulletin, vol. 32, p. 533. 


