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NOTE ON VOLTERRA AND FREDHOLM PRODUCTS 
OF SYMMETRIC KERNELS* 

BY L. M. BLUMENTHAL 

1. Introduction.] The purpose of this paper is to establish two 
theorems concerning the Vplterra and the Fredholm products of 
two continuous, symmetric functions. These two theorems were 
obtained in the course of an investigation that had as its ob­
ject the determination of the existence of permutable functions 
(first kind) of the second order; that is, the determination of 
functions K\(x, y), K2(x, y) such that 

(1) K1K2K2K1 = K^KiKiK^y 

but 
K1K2 7^ K2K1, 

where 

KXK2 = f Kx(x, t)K2(t) y)dt. 

To satisfy ( l ) , î it is sufficient to find two functions Ki, K2 
such that 

(2) K1K2 = ~ K2K1J 

for, composing (on the right) the left-hand member with K2Ki, 
and the right-hand member with its equal, —K1K2, we obtain 
(1). If two functions satisfy (2), we shall call them skew per­
mutable. Assume, now, that K^x, y), K2(x, y) are symmetric 
functions of their arguments. We have the following lemma. 

LEMMA. The Volterra product of two symmetric functions is 
itself a symmetric f unction if and only if the two functions are skew 
permutable. 

Let 

K(x, y) = C Ki{x, i)K&, y)dt = K1K2; 
J x 

* Presented to the Society, September 9, 1931. 
f I wish to thank G. C. Evans for suggestions given me during the prepara­

tion of this paper. 
t In this part of the paper we are concerned entirely with Volterra compo­

sition. 
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then 

K{y,x) = f ^ Ö ^ , x ) 4 
J y 

and since K\ and K2 are symmetrie functions, 

Hence K(x, y) =K(y, x), if and only if KiK2 = — K2Ki, that is, 
if and only if the functions Kh K2 are skew permutable. 

Hence the problem of finding two symmetric functions whose 
Volterra product is symmetric is equivalent, by means of the 
Lemma, to finding two skew permutable functions. 

Before treating the general case, we show that if a continuous 
function is skew permutable with unity, then the function is 
identically zero* 

If K2(x, y) is such a function, then 

r^ite, y)di = - [VK2(x, Ö«. 

Calling the common value of the two integrals <j>(x, y), we have 

— = - K2(x, y), — = - K*(*> y)> 
ax ay 

and <£(#, y) must satisfy the equation 

d<l> d4> 

dx dy 

that is, 

0 = 4>(y + x). 

But <£(#, x ) = 0 , hence 0 (y+x) = O,f and therefore K2(x, y) is 
identically zero. We now state the following theorem. 

* This is in marked contrast to functions permutable with unity. These are 
functions of (y—x), the so-called functions of closed cycle of Volterra. 

t Consider <f>=*<f>(y-\-x). Along the lines x+y — c in the XY plane, <f>=c. 
But along the line y = x in this plane, <£=0. Hence <t>(y+x) vanishes identi­
cally. 
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THEOREM 1. If the Volterra product of two continuous, sym­
metric functions, Ki(x, y), K<L(X, y), where K\ is of the first order, 
with continuous first partial derivatives and with d2Ki/dxdy con­
tinuous, is a symmetric function, then one of the functions is 
identically zero. 

Now if a function F{x, y) is of the first order, we may form 
the function 

Fi(xu 3>i) = a(xi)b(yi)F[m(xi), tn(yi)], 

where we have written 

x = tn(xi), y = m{yi)y mf(x^) ?£ 0, 

and the functions a and b satisfy the relation 

a(#i)&(ffi) = tn'(xi). 

I t may be shown* that if 

1 
a = e"", b = eM, 

F(x, x) 
where 

\ V X / y— x 

dx^ 
F{x} x) 

then F\(x\, y\) is such that 

/OF A /dFA 
*"i(*i , * i ) = 1, ( — ) = ( — ) = 0 . 

\dXi/yl==Xl \dyi/ Vl^Xl 

We say that the function F^ is in canonical form. 
We shall assume that our function K\(x, y) is in canonical 

form. We prove our theorem by showing that if K2(x, y) is a 
continuous function, skew permutable with K\, then K% 
vanishes identically.! Then an application of the Lemma yields 
the theorem. 

* See, for example, Volterra et Pérès, Leçons sur la Composition, Paris, 
1924, p. 38. 

f To show this it is unnecessary to assume K\, K% symmetric. Their sym­
metry enters, however, in applying the Lemma. 

• - ƒ 
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Suppose that K2{xy y) is a continuous function satisfying the 
condition KiK2= —K2Ki. Calling the common value of each 
side 0, we have 

<l>(x, y) = f " Kx(x, O*aft, y)di = - CK*(x, Ö ^ f e y ) « , 

with <£(#, x)=0. 
Differentiating, and recalling that K\(x) x) = l, we obtain 

dx 
= - K2(x, y) + J - - *,(*, y)df, 

d4> rv dKi 
— = - X2(*, y) - * , ( * , { ) — - (£, y )# . 

Solving these two Vol terra integral equations in K2(x, 3>) we 
get 

d<t> r* uSd4>(S,y) d<t> ry 

K2(x, y) = - I k(x, £)• 
OX «/ x ot 

dt, 

d<t> ryd(t>(x, (•) 

where k(x, y), g(x, y) are the resolvent kernels for dKi/dx and 
dKi/dy respectively. 

Performing an integration by parts in each of the last 
two equations, and taking into account that (dKi/dx) yxX 

= (dKi/dy)y=x = 0, we have 

K2(x, y) = - - + — ^ * t t , y)#, 
d</> t fydk(x, ö 

From these two equations, and the relation* 

dk(x, y) dg(x, y) 
— = — = i(x, y), 

oy dx 

* This is due to Pérès; see Volterra et Pérès, Leçons sur la Composition, 
p. 40. 
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we finally obtain <£, given by means of the integro-differential 
equation 

d<£ d(j> rv r 
— - — = [<t>{x, i)^, y) +r>(x, £)*(*, y ) ] # . 
ox ay Jx 

If we denote the right-hand member by £(x, y), we have 

d* * * G, N 

dx ay 

from which 

(3) 4>{x, y) = f g(a, y)J* + 0(y + *), 
Jo 

with 6 an arbitrary function. But <£(#, # ) = 0 , whence, since 
S(#, x) = 0 , we have 0(2#) = 0 . Then 0(;y-|-#) = 0 and (3) becomes 

£(#, y)dx* 
0 

a homogeneous Volterra integral equation for <£. But this 
equation has as its only continuous solution <£ = 0. Then K2^0, 
and the theorem is proved. 

COROLLARY. The theorem is valid f or f unctions Ki(x, y) of any 
definite order. 

2. Fredholm Composition. In this section we deal exclusively 
with composition of the second kind.* It is well known that if 
K(x, y) is a symmetric kernel, then all of its iterated kernels, 
Kn(x, y), are symmetric, and since 

•J a 

we have an example of two symmetric functions whose Fred-
holm product is likewise symmetric. We seek now to character­
ize those symmetric functions whose Fredholm product is also 
symmetric, a t least in the case of both functions having only 
a finite number of characteristic values. 

* Volterra, Question* générait suite equazioni intégrait ed integro-differenziali, 
Rendiconti dei Lincei, Ier sem., 1910, p. 178. See also, Volterra, Leçons sur les 
Fonctions des Lignes, Paris, 1913, p. 179. 
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Let K(x, y), G(x, y) be two continuous, symmetrie kernels; 
then 

KG(x, y) = f K(x, ÖG({, y)dt, 
*J a 

KG(y, x) = f K(y, f)G(£, x)dÇ, 

= f G(«, Öiftt, y ) # , 

= GK(x,y). 

Thus the Fredholm product of two symmetric kernels is sym­
metric if and only if KG = GK; that is, if and only if the kernels 
K, G are permutable of the second kind. 

Now Volterra has shown* that the problem of permutability 
of the second kind can be reduced (at least in the case of kernels 
having a finite number of characteristic constants) to the prob­
lem of permutability of square matrices. In place of applying the 
complicated general theory (in which, of course, no hypothesis 
of symmetry on the part of the kernels is made) we shall ob­
tain the characterization sought by methods more germane to 
the problem. 

If, now, K(x, y), G(x, y) are symmetric kernels such that 

P(*> J) = f G(x, QK& y)dt = P(y, *), 

then it is evident that Jh
aGr(x, £)i?s(£, y)d% is also a symmetric 

function. Suppose K(x, y), G(x, y) admit the distinct character­
istic constants Xi, X2, • • • , A& and /xi, JU2, • • • , fxg respectively. 
Then we may write 

* <t>i(x)<t>i(y) 
Kr(x, y) = 2-, ; (r = 1, 2, 3, • • • ), 

Gs(x, y) = £ - ^ - ^ , (5 - 1, 2, 3, • • • ), 

* Volterra, Leçons sur les Fonctions des Lignes, Chapter 12. 
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where <£*, 03- are the characteristic functions of K and G re­
spectively, corresponding to the characteristic values Xt and /z,\ 
Now, in order that the Fredholm product KG be symmetric, it 
is necessary that 

(4) f Kr(x, ÖG.(f, y)dt = f * , ( ? , ÖG.ft, x)d£, 
J a J a 

(5) 

for all positive integers r, s. Writing 

@yO, y) = BiWBjiy), 

we have 

(6) f £,(*, ÖG.tt, y)# = Z E 

and hence, substituting in (4), 

•̂  a 

Xi>/ 

EZ 
i= i ?=i 

f *,(*, Ö@,«, y)# - f *,(?, $)©ƒ(*, *)«« 
*J a *J a 

X/My5 
= 0 

for all positive integral values of r, 5. 
We write the above equations in the form 

1 = 1 ' M 

(7) 

£, ƒ #,(*, Ö©/& y)# - ƒ *i(y, Ööytt, *)<*£ 
E 
y=i 

* 1 

E — *< = o, 
i = l A i r 

M j 

and agree to hold 5 fixed, while r takes on the values 1, 2, • • • . 
We obtain in this way an infinite number of homogeneous equa­
tions that the k functions Xi must satisfy. Consider the first k of 
these equations. The determinant of the coefficients is the 
Vandermond determinant | l / X / |, (i, f = 1, 2, • • • , k)f of order 
k. This determinant is not zero, and hence the first k equations 
of the set have no solution other than X^ = 0, (i = l, 2, • • • , k). 
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Whence this is the only solution of the complete set of equations. 
Thus 

E - [ f *<(*, öe,«, y)ü 

- f *<(y, öeyft, *)#! = i : - r , = o. 

Again we have an infinite set of equations in g functions Tj 
and the determinant of the coefficients appearing in the first g 
of the equations is the non-vanishing Vandermond determi­
nant 11//V |, (j, s = 1, 2, • • • , g). Hence the only solution of the 
system is !%• = (), and we have 

(8) 
•̂  a v a 

for each i = l, 2, • • • , k and j = l, 2, • • • , g, as the necessary 
conditions that the Fredholm product KG be symmetric. These 
conditions are evidently sufficient, as an inspection of (6) 
assures us that if these conditions are satisfied, then 

f Kr(x, QG.tt, y)di = f Kr(y, {)£({, *)#• 
v a J a 

We state the foregoing in the form of the following theorem. 
THEOREM 2. In order that the Fredholm product of two sym­

metric kernels, admitting only a finite number of characteristic 
constants, be symmetric, it is necessary and sufficient that the con­
ditions 

Ja Ja 

be satisfied f or each i = l, 2, • • • , k] j = l, 2, • • • , g. 
I t is evident that these conditions are highly restrictive. Sub­

stituting from (5), conditions (8) reduce to 

Cifl>i(x)6j(y) = Ciflj(x)4>i(y), 

where 

cu = f *<(Ö*/(*)#. 
Ja 
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Thus the conditions are satisfied if and only if the character­
istic functions of K and G are orthogonal, or satisfy the rela­
tions 

so that 

= = a constant, say ka\ 
e,(x) e Ay) 

</>i(x) = kijdj(x). 

That the class of functions G(x, y), symmetric, and forming 
with a symmetric function K(x, y) a symmetric Fredholm 
product, is so intimately related to the function K(x, y) in the 
case of each of the functions having a finite number of character­
istic constants, is a result that (it appears to the writer) could 
hardly have been anticipated. This is even more striking when 
the result is viewed as a theorem giving necessary and sufficient 
conditions for the permutability of the second kind of two func­
tions satisfying the conditions of the theorem. In addition to 
exhibiting a fact that does not seem to have found a place in 
the literature of permutable functions of the second kind, the 
simplicity of the method used is in marked contrast to the more 
complicated procedure usual in treatments of this subject. 

I t might appear at first that using the well known develop­
ment of the iterated kernels in terms of the characteristic func­
tions 

Kr(x, j) = 1^ > (r ^ 2), 

A 0/0)0/0) 

3 = 1 M j 

both series converging absolutely and uniformly, we might treat 
the case for which G and K admit infinitely many characteristic 
values by means of an obvious extension of the previous analysis. 
Tha t this is not the case is due to the fact that when we con­
sider the infinite set of homogeneous equations in an infinity of 
unknowns that is the analog of the set of equations (7), the 
infinite Vandermond determinant 

I 1 

1x7 
fr = 2, 3, . . \ 
\ i = 1, 2, • • • / , 



900 L. M. BLUMENTHAL [December, 

converges to zero. This is immediate upon applying two theorems 
due to T. Gazzaniga.* Indeed, these theorems are sufficient to 
establish in general that the infinite Vandermond determinant 
formed by taking the reciprocals of the infinitely many zeros of a 
transcendental integral function converges to zero. Thus, the 
foregoing method is not well adapted to kernels with an infinite 
number of characteristic values. 

Since we have shown that the problem is equivalent to func­
tions K, G being permutable of the second kind, the general 
theory may be applied to determine the conditions under which 
this takes place. This is a problem of much difficulty. I t is 
possible that modifying Volterra's definition of composition so 
that 

E(x, y) = K(x, y) + G(x, y) + V K{x, ÖG& y ) # , 

is defined to be the composition of K and G (which leaves the 
condition of permutability unaltered) may make the problem 
capable of being handled by means of the algebra of functions 
introduced and developed by Griffith C. Evans.f 

T H E R I C E INSTITUTE 

* Sui determinanti d'ordine infinite, Annali di Matematica, (2), vol. 26, 
p. 205; Intorno ad un tipo di determinanti d'ordine infinito, ibid., (3), vol. 1, pp. 
83-94. 

t See his Cambridge Colloquium Lectures, Functionals and their Applica­
tions, 1918, p. 119; see also Sopra Valgebra delle funzioni permutabili, Atti dei 
Lincei, vol. 8 (1911), p. 6. 


