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T H E DISTRIBUTIVE LAWS FOR HOMOGENEOUS 
LINEAR SYSTEMS 

BY A. A. BENNETT 

The terminology of addition and of multiplication may be 
readily extended to apply to homogeneous linear systems or to 
their geometrical interpretations, linear projective spaces. The 
product ab of two linear spaces a and b, denotes the intersection 
or greatest linear space common to the two given spaces. I t is 
thus the logical product of the spaces. The sum a+b denotes the 
join or least linear space containing the given spaces as sub-
spaces. I t is analogous to the logical sum but is distinguished 
from it by the fact that a+b will in general contain also points 
which are in neither a nor 6. Addition is commutative as is also 
multiplication. One has a+a=a, and aa = a, etc. Many of the 
formulas established for the algebra of logic hold here also.* 

An essential feature of the algebra of logic is the following 
pair of relations, the first of which is applicable to ordinary alge­
bra: 

I a(b + c) = ab + ac, 

I I a + bc = (a + b)(a + c). 

If I holds a is said to be distributive with respect to b and c in 
the first sense, if II holds, in the second sense. The proofs of 
these when based upon other postulates are not trivial.f For the 
case of even a one-dimensional projective space, these distribu­
tive relations fail to hold. Indeed if a, b, and c denote three dis­
tinct points of a line, and 0 denotes the null space, we have 
ô + c = entire line, a(b+c)=a, but ab = 0, ac = 0, ab+ac = 0. 
Hence a(b+c)?£ab+ac. Similarly a+bc = a, but {a + b) (a+c) 
= entire line. 

While from two elements a and b, one can generate by addi­
tion and multiplication only the closed set ab, a, b, a + b, yet 

* See A. A. Bennett, Semi-serial order, American Mathematical Monthly, 
vol. 37 (1930), pp. 418-423. 

t See E. V. Huntington, Postulates f or the algebra of logic, Transactions of 
this Society, vol. 5 (1904), pp. 288-309, particularly Peirce's proof, pp. 300-
302. 
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from three elements, addition and multiplication yield in general 
an unlimited system. A special "distributive" system of 17 ele­
ments closed under addition and multiplication due to restric­
tions imposed upon a, &, c, is the following: 

abcj ab, ac, be, a(b + c), b(a + c), c(a + b), a, b, c, 

a + be, b + ac, c + ab, a + b, a -\- c, b + c, a + b + c, 

where each of the three elements a, &, and c is distributive with 
respect to the other two in both senses, which as will be seen 
amounts to but one condition in ordinary spaces. The fact that it 
is actually closed under both operations may be verified by rou­
tine computation. The system is capable of realization by linear 
spaces in an unlimited number of ways. The following inequali­
ties are readily proved from first principles : 

I ' a(b + c) ^ ab + ac, 

I I ' a + bc g (a + b)(a + c), 

but such inequalities do not tell the whole story. 
In the formal algebra of logic there is no need of assuming the 

existence of prime non-zero quantities of such a sort that if p is 
a prime element (hence, ^ 0) and if x <p, then necessarily x = 0. 
The existence of such prime elements, which serve as points in 
the geometrical interpretation, makes possible in the theory of 
spaces of at most a countable number of dimensions, a method 
of proof by mathematical induction, quite foreign in nature to 
the purely formal relations in the algebra of logic. In practice the 
theory of linear spaces of more than two dimensions is usually 
built up by use of mathematical induction from the theorems 
concerning collinear and coplanar points by use of transver-
sality properties. 

The following two theorems might appear to have a formal 
character independent of the existence of points. They are found 
to hold true for subspaces of any space of a countable number 
of dimensions, but no direct formal proof without the interven­
tion of postulates comparable to that of the existence of points 
seems to be available. 

THEOREM 1. If three linear spaces a, b, and c are such that a is 
distributive with respect to b and c in one sense, it is distributive in 
both senses. 
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THEOREM 2. If three linear spaces a, b, and c are such that a is 
distributive with respect to b and c, then b is distributive with re­
spect to a and c. 

These theorems will be proved only for spaces which contain 
points, although without the use of mathematical induction. 
The following property of points will be used. 

PROPERTY. If a, b, and c are non-empty spaces and x is a point 
of a that is in neither b nor c, but is in b+c, then there is a point y 
of by and a point z of c, such that x is in y+z. 

Duality will not be available for if the total space be of in­
finitely many dimensions, it is not necessary to assume that the 
dual of a point has a meaning, although this is usually the case. 

Two cases of the relations among a, b, c, will be considered. 

CASE A. There exist three points x, y, z, such that simul­
taneously 

(1) ax = Xj (2) x(ab + ac) = 0, (3) by = y, 

(4) y(ab + be) = 0, (5) cz = z, (6) z(ac + be) = 0 

(7) xy = xz = yz = 0, (8) x + y = x + z = y + z. 

CASE B. N O set of points x, y, and z exists, such that simul­
taneously all eight conditions are satisfied. 

In Case A, consider the relation between a(b+c) and ab+ac. 
Since by = y, cz = z, and y+z = x+y, it follows that x is 
in a, and in &+c, but from x(ab-\-ac) = 0 it follows that x is not 
in ab+ac. Hence a(b+c) >ab+ac. 

On the other hand, if a(b+c) =ab+ac, there cannot exist so 
much as a single point x in both a and b+c, but not in ab+ac. 
I t remains to show that if a(b+c) ^ab+ac, then necessarily all 
the conditions of Case A are satisfied. Since a(b+c)*zab+ac, 
the hypothesis implies that a(b + c) >ab+ac, and there exists at 
least a point x in both a and b+c, while not also in ab+ac. 
Since x is in a but not in ab+ac, it is not in ab, and hence not in 
b. Similarly x is not in c. Hence there is in & a point y, and in c 
a point z such that x is in y+z. Hence we see that ax = x, 
x(ab+ac) = 0 , by — y, cz~z. I t remains to prove the other rela­
tions required for Case A. For (7), we must show that x, y, z 
are distinct points. If x = y, then this common point is in both 
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a and b; hence in ab and hence in ab+ac, contrary to hy­
pothesis. Similarly X9^z. If y — z, then y+z = y. Since # is in y+z, 
x would coincide with y contrary to the previous conclusion. 
Hence (7) is established. Since x, y, z are distinct points, and x 
is in y+z, condition (8) follows. We must show that (4) and (6) 
are satisfied. We may first show that y is not in ab. For if it were, 
then the line y+z which is the line x+y would join two distinct 
points x, yy both in a, and hence lie in a, so that z would be in a, 
and hence in ac. Then y+z would lie in ab+ac, and x{ab+ac) 
would be x contrary to hypothesis. Similarly z is not in ac. If 
now y were in ab + bc then y would be a fortiori in ab+c, as would 
also z, so that x would be in ab + c. But z is not in ab, since it is 
not in ab+ac, and x, which is in a, is not also in c since it is not 
in ac. Hence there would exist points y' in ab and z' in c, such 
that x is in y'+z'. But now as by the previous argument the 
line y'+z' is the line x+y' which must lie in a, so that z' is in 
ac, and x is then in ab+ac contrary to hypothesis. Hence, 
y{ab+ac) = 0. Similarly z(ac+bc) = 0 . 

Hence Case B is a necessary and sufficient condition that a 
be distributive with b and c in the first sense. 

Consider next distribution in the second sense. If a fails to be 
distributive with respect to b and c in the second sense, there is a 
point t in both a + b and a+c, which is not in a + bc. This point 
cannot then be in a or in be. It is therefore not in both b and c. 
If it is not in b, then we may choose a point x in a and a point y 
in b, such that / is in x+y, while /, x, y are distinct. If it is also 
not in c, then using the same x we can take x in c such that / 
is in x+z. If / is in c, we may take / as z. In any case we have 
three distinct collinear points x, y, z, in a, b, c, respectively. 
Hence (1), (3), (5), (7), (8) of Case A are satisfied. The line 
x+y=x+z is not in a + bc, hence neither y nor z is in be. Since 
t is not in both b and c, we may so assign the notation that it is 
not in b. Then x is not in ab, since otherwise #+3/ would be in b, 
and t would also be in b, contrary to hypothesis. If now x were 
in ac, x+z would be in c, so that y which is in this line would be 
in c, and hence in be. Then x+y would be in a + bc contrary to 
hypothesis. Hence x is in neither ab nor ac. If x were yet in 
ab+ac, then the line x+y—x + z would be in ab+ac+b—ac + b, 
and in ab+c. But the line could not lie wholly in ab nor ac nor 
b nor c, since x is in neither b nor c. The line must then join a 
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point of ac with a point of b and join a point of ab with a point 
of c. Let Xi in ab, x% in ac, be the points where this line meets 
these spaces. The line then contains x, x\, x2 all in a, where al­
though xi and #2 might coincide, neither could be x. But then 
the line would lie wholly in a, contrary to hypothesis. Hence 
x(ab+ac)=0, and (2) is established. Likewise y cannot be in 
ab + bc. For if it were then #+3/ would be in a+ab + bc = a + bc, 
contrary to hypothesis. Thus (4) is established, and (6) follows 
similarly. Hence for a to fail to be distributive in the second 
sense implies Case A. Conversely given Case A, then a fails to 
be distributive with respect to b and c in the second sense. In­
deed y will then be in a + b and also in x+y which is in a+c. But 
y will not be in a + bc. For y is in b, but not in ab + bc, hence not 
in ab nor be, hence not in a nor be. If y were yet in a+bc, there 
would be a point u in a, and a point v in be such that y would be 
in u+v. But y and v are then distinct and are both in b. Hence 
u+v is in b, and u is in b. Hence u is in ab. Hence y would be in 
ab + bc contrary to hypothesis. Hence Case A is a necessary and 
sufficient condition that a fail to be distributive with respect to 
b and c in the second sense. 

Since Case B is necessary and sufficient for a to be distributive 
with respect to b and c in the first sense and again also in the 
second sense, Theorem 1 is proved. Since this Case B is sym­
metric in a, b, and c, Theorem 2 is proved. 

BROWN UNIVERSITY 

ON FACTORING LARGE NUMBERS* 

BY D. H. LEHMERf AND R. E. POWERS 

1. Introduction. Various non-tentative methods of factoring a 
given odd number N, based on the expansion of N112 in a regular 
continued fraction, have been described4 The success of most 
of these methods depends on the appearance of a perfect square 
among the denominators of the complete quotients. In practice, 
however, such an event occurs all too infrequently. More often 

* Presented to the Society, April 11, 1931. 
t National Research Fellow. 
% Dickson, History of the Theory of Numbers, vol. 1, Chapter 14; and D. N. 

Lehmer, this Bulletin, vol. 13, p. 501, and vol. 33, pp. 35-36. 


