
ANALYTIC FUNCTIONS AND MATHEMATICAL 
PHYSICS* 

BY G. Y. RAINICH 

1. Some Properties of Analytic Functions. We begin by re­
viewing briefly some fundamental points in the theory of ana­
lytic functions in a form which will be convenient for further ref­
erences. Departing slightly from customary notations, we shall 
write w = v+iu1 and we shall consider the theory primarily as the 
theory of a system of differential equations 

dv du du dv 
(1) = 0, — + — = 0, 

dx dy dx dy 
which are called the Cauchy-Riemann equations. 

We shall not enter into various fine points which arise in the 
discussion, but we may mention that the functions u and v, as 
well as the other functions which appear later, must be assumed 
to be differentiable, that is, to possess complete differentials in 
the sense of Stolz. 

(a) One point of view often taken in applications is that we 
have a vector or, rather a vector field, of components (u} v), and 
that the differential equations express the fact that the rotation 
(Curl) and the divergence of this vector are zero. 

Another point of view, which we shall find extremely useful, 
is that we have two vectors ƒ and r, whose components are / i = u, 
f2 = v, and n = v, r2= —u, respectively, and that the differential 
equations express the fact that the divergences of both are 
zero. These two vectors, as the relations 

(2) / i = - '2, h - rlf 

show, are perpendicular and of equal length, so that we may say 
that the theory of analytic functions is the theory of two equal 
and perpendicular vectors in the plane, with zero divergences. 

(b) The differential equations may be considered as integra-
bility conditions. They are equivalent to the vanishing of certain 

* This paper covers in part the subject matter of a symposium lecture 
given by the author before the Society in Chicago, April 3, 1931. 
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ex 
U = ; 

r2 

cy 
V ~ r2 

contour integrals, taken around contours inside of which the 
functions are regular. 

(c) If the functions are not regular inside a contour but have 
singularities in one point, the integrals do not in general vanish, 
but furnish two real numbers (which taken together as a com­
plex number form a residue) and which characterize to a certain 
extent the singularity. The simplest type of singularity is shown 
by the function w = ci/z, for which in our notations we have 

(3) 

the residue in this case is equal to ci. (Here c is a real number and 
r2 = x2+y2.) 

(d) By elimination of one of the functions (w, v), we obtain 
for the other the second-order (Laplace) equation 

d2u d2u 
(4) + = 0. 

dx2 dy2 

(e) There are certain second-degree quantities that might be 
discussed in connection with an analytic function ; these are 

(5) W = \w2 = \{v2 - u2) + iuv, 

half the square of the function ; and 

(6) Q = W' w = u2 + v2 = i(fi2 + ƒ22 + rf + ri), 

the square of the modulus, or the norm of the function. By the 
fact that (u, v) satisfy the differential equations (1) certain con­
ditions are imposed on these second-degree quantities, and we 
shall now write them down. 

For W it is easy ; the statement that w is an analytic function 
means the same as the statement that \w2 is an analytic func­
tion, and the latter statement is equivalent to the relations 

(7) 

I di(u2 — v2) duv 
1 — - + — = 0, 

dx dy 
duv dh(v2 — u2) 

+ -21 L = 0. 
dx dy 

This system of differential equations is then equivalent to sys­
tem (1), and it is easy to verify this fact directly. 
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The situation is more complicated with respect to Q. The 
easiest way to arrive at the differential equation which must be 
satisfied by Q as a result of the fact that u> v satisfy (1) seems 
to be the consideration of log w2. This must be analytic if w is, 
and therefore the real part of log w2 must satisfy the Laplace 
equation. But the real part of log w2 is log ww, so that we have 

d2log<2 a2 logo __ 

dx2 dy2 

or 

\dx2 ay2/ \dx/ \dy / 

It is interesting to note that this equation is non-linear, and 
that it therefore gives an example of a non-linear equation which 
is a consequence of a system of linear equations. We next ask 
ourselves whether the condition expressed by the last equation 
is sufficient, in other words whether every function Q satisfying 
this condition may be considered as the norm of an analytic 
function. 

In the first place it is clear that a function is not entirely 
determined by its norm. If the function w = v+iu has the norm 
(?, any function V+iU% for which 

(9) U = u cos 4> — v sin <£, V = u sin <£ + v cos 0, 

where </> is an arbitrary function of x and y, will have the same 
norm. The question then reduces to this: are there among the 
functions V+iU some that are analytic? An easy calculation 
leads to the result that the equations 

dv du 

(10) dx dy 

du dv 

dx dy 

with (j>i = d<j)/dx, <p2 = dcl)/dy, must be satisfied. Further calcula­
tion shows that the integrability condition for these equations 
is exactly the above equation (7) for Q. 
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(f) An analytic function can be developed into a power series. 
In view of an analogy that we want to establish later the follow­
ing way to introduce this series might find its place here. We 
first write the Cauchy-Riemann equations (1) in the form 
dw/dx+idw/dy — 0} and, passing to polar coordinates, we have 

dw dw 
(11) r +i = 0. 

dr dd 
Next, making use of the fact that the equation does not contain 
6 explicitly, and therefore must allow solutions of the form 

(12) Peikd, 

where P is independent of 0, we find for P the equation 

ÔP 
r kP = 0, 

dr 
which has a solution P = rk, so that 

(13) w = rkeike = zk 

is a solution of the original equation. If we require the solution 
to be one-valued, k must be an integer, and if we want it to be 
continuous (at the origin), k must be non-negative. A linear com­
bination of a finite number of such solutions is a polynomial, and 
the general solution may be presented as a linear combination of 
an infinite number of such solutions which we may consider as 
the limit of a (uniformly convergent) sequence of polynomials, 
or, if you prefer, as a power series. 

2. The Volterra Theory. We pass now to generalizations. We 
saw that the theory of analytic functions may be considered as 
the theory of two equal and perpendicular vectors with vanish­
ing divergences. We may try to extend this to the three-dimen­
sional space. If we take two vectors ƒ and r and write down the 
conditions for their equality and perpendicularity, we find 

(14) f? +fi +fi = n 2 +ri +ri, / i T i + / 2 - f 2 + / . - r . = 0 

and although the differential equations 

(15)
 dA+dJi+

dl± = (ii ^ i + iü + ^ = 0 
dx dy dz dx dy dz 
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are linear, the system as a whole is not. The same is true in the 
two-dimensional case, of course, but there the equations are re­
duced to linear equations easily. We shall not consider now the 
question whether these equations can be reduced to linear equa­
tions (see §6) ; trying to keep more or less to the historical order 
we shall outline a way out from this difficulty, which leads to 
Volterra's theory of conjugate functions dated back to 1889.* 

We may consider a vector as a finite portion of a directed line 
(or curve), and its components as the lengths of the projections 
of this finite portion on the coordinate axes. If now we consider 
a finite portion of a plane, or surface, as a surface vector, and as 
its components the areas of its projections on the coordinate 
planes, we have a new object to operate upon. The general case 
may be reduced to tha t of a triangle with vertices at (0, 0, 0), 
(#i, x2, Xz), (yi, y2, 3>3). The areas of the projections are the de­
terminants of the matrix 

II. %\ X2 #3 II 
"2 \\> 

II 3>1 3>2 ^3 H 

which we m a y deno te b y R23, Rzu ^12 or L, M, N, or in general 

I yi Ji I 

I t may seem sufficient to consider only the above three com­
ponents; however, it is more convenient not to restrict i and 

j , but to use all nine combinations, introducing the relation 
Xij+Xji = 0. These nine may be arranged into a square matrix 

e Rn Ru Rn \ f O N - M \ 

(16) ( R21 R22 R2Z V ( -N O L ) , 

\ Rzl RZ2 Rzz I \ M - L O I 

so that a surface vector is represented by a matrix possessing the 
property of antisymmetry. 

Consider now a line vector X = Fi, Y=F2i Z — Fz with the 
above surface vector. Conditions of perpendicularity and nu-

* V. Volterra, Sulle funzioni conjugate, Rendiconti dei Lincei, (4), vol. 5 
(1889), pp. 599-611. See also Rendiconti di Palermo, vol. 3 (1889), pp. 260-272. 
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dY 

dz ' 

dZ 

dx 

dX 

" dz ' 

dY 

dx 

dX 

dy 

merical equality may be shown to result simply in the equations 

(17) i?23 = ^ 1 , ^31 = ^ 2 , R\2 = Ft, 

which should be compared with the equations (2). If now we 
impose the vanishing of divergences 

y-^dFct ^ T—dRia 

E—= o, ET—= o, 
Cf X(x Cf X(x 

and write out everything without indices in terms of X, Y, Z, 
x, y, z} we obtain a system of four equations 

dx dY dz dz 
(18) + + = 0, 

dx dy dz dy 
This is an analog for three-space of the Cauchy-Riemann sys­
tem. I t is worth noting that setting Z = 0 we get two functions 
X and Y depending on x and y alone which satisfy the equations 

dX dY dY dX 

dx dy dx dy 

that is, exactly the Cauchy-Riemann equations for X = u, Y = v. 
We further note that the elimination of two of the three func­
tions X, F, Z from the above four equations leads as in (d), §1, 
to the Laplace equation in three dimensions. We have thus a 
theory in three-space which may be considered as a generaliza­
tion of the theory of analytic functions, and which is essentially 
the theory of two equal and perpendicular vectors with vanish­
ing divergences, one of these vectors being a line vector, and the 
other a surface vector. 

There are no essential difficulties (except that of losing the 
help of intuition) in extending the theory to any number of di­
mensions. We shall only take up the case n = 4. Here we may 
consider the case of two perpendicular surface vectors with van­
ishing divergences. There are here six coordinate planes, and 
therefore every surface vector has six components. They are 
known as six-vectors. We may write, using notations similar to 
those used above, ja for the components, with the condition 
fij-\-fji = 0. In four-space, this will mean a square four-rowed 
matrix, whose sixteen elements reduce to six as a result of these 
relations. The conditions of numerical equality and perpendicu-
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larity for two such vectors ƒ and r again reduce to linear rela­
tions, namely, 

(19) /4 i = r2z, ƒ42 = rSh ƒ43 = ri2, ƒ23 = f41, ƒ31 = ré2, ƒ12 = r43, 

which should be compared with (2) and (18). The divergence 
equations together with these relations constitute a linear sys­
tem which is analogous to, and a generalization of, the Cauchy-
Riemann system (1). This system may be written as 

(20) 
U i/VQ» (J JvCC 

or, in full, if we set 

(21) flt = X, /24 = Y, f3i = Z, ƒ23 = L, ƒ31 = M, flt = N, 

(22) 

dZ dY dL 
+ = 0, 

dy dz dt 
dX dZ 

• + • 

dM 
0, 

dz dx dt 

dY dX dN 

dx dy dt 

dL dM dN 

— + + 
dx dy dz 

= 0, 

= 0, 

dN dM dX 

dy dz dt 

dL dN dY 

dz dx dt 

dM dL dZ 

dx dy dt 

dX dY dZ 

+ + 
dx dy dz 

= 0, 

= 0, 

= 0, 

= 0. 

Here again the elimination of all but one component leads 
to a Laplace equation. 

As I have said, analogous considerations apply to spaces of 
any number of dimensions, and when the sum of the numbers of 
dimensions of the two vectors is equal to the number of dimen­
sions of the space the system reduces to a linear system—this is 
the case studied by Volterra.* Volterra's work has been followed 
up by Lagally, de Donder, Dixon,f and a few others, but very 
much remains to be done. Many features of the theory of ana­
lytic functions are preserved, but not all. Complex numbers or 

* Volterra, loc. cit. 
t M. Lagally, Münchener Berichte, 1917. Th. de Donder, Bulletin des 

Sciences de Belgique, 1906, pp. 400-409. A. C. Dixon, Quarterly Journal, vol. 
35 (1904), pp. 283-296. 
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hypercomplex numbers are not used except in the four-dimen­
sional case by Dixon. The three-dimensional theory bears the 
same relationship to the Newtonian potential as the theory of 
analytic functions to the logarithmic potential, and some results 
of potential theory can be directly translated into this theory, 
but there are some questions which have to be treated inde­
pendently. Of course, the differential equations may be replaced 
by integral conditions, by the vanishing of certain integrals 
taken over surfaces surrounding volumes in which the functions 
are regular. An extension of the Cauchy integral formula can be 
proved for all cases. There are different types of singularities, 
point singularities, line singularities, etc. The theory of residues 
presents a particular fascination. Expansions analogous to 
power series exist; in the three-dimensional case they are essen­
tially developments into series of harmonic functions. But we 
shall abandon now the purely mathematical developments and 
pass to applications. 

3. Analogous Situations in Physics. We shall not go farther 
back than Newton in tracing the development in mathematical 
physics. With the name of Newton we associate a great many 
things, but here we are interested in particular in two. First, in 
the general laws of mechanics stating that the time rate of 
change of the momentum is equal to force 

dmu dmv dmw 
(23) = X, = F, = Z; 

dt dt dt 

and, second, in the special case (inverse square law) in which the 
force components are given by 

ex cy cz 
(24) X = — ; F = — ; Z = —, 

yo yo yO 

which should be compared with (3). We have here the attracting 
point, and the attracted point, both as discrete points. One of 
the trends of physics has been the transition from the considera­
tion of discrete points to the consideration of fields, that is, 
continuously distributed quantities. We shall follow this trend 
separately for the right-hand sides and the left-hand sides of the 
equations, that is, the forces and matter. 
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First, as to the forces, we find easily that the force compo­
nents given by the explicit formulas (24) satisfy the differential 
equations 

dX dY dZ _ dX __ dY dX _ dZ dY _ dZ 

dx dy dz dy dx dz dx dz dy 

This is at the same time a generalization of the inverse square 
law and its source. We can get the inverse square law back from 
these differential equations by solving them under the addi­
tional condition of symmetry around a point. In passing from 
an explicit expression for the law of force to the partial differ­
ential equations we shifted our attention, without changing any 
essential features of the situation, from the singularities of the 
field to the field connected with these singularities. 

We may do a similar thing to the left-hand sides of our equa­
tions, and introduce a continuous fluid instead of a discrete par­
ticle (the case of a particle may then be obtained as a limiting 
case of infinite density). Mathematically, this transition is a 
transition from ordinary to partial differential equations. In the 
simplest case, that of steady motion, when density is constant, 
and there exists a potential of velocities, the equations satisfied 
by the components of velocity are 

du dv dw du dv du dw dv dw 

dx dy dz dy dx dz dx dz dy 

These equations were known in the 18th century; they appear 
for instance, in a memoir of Lagrange* in 1760; the remarkable 
thing is that these equations of the simplest motion of a fluid 
are the same as those of the simplest field of force. Furthermore 
these equations are exactly the case n = 3 of the Volterra theory 
(§2) and thus a generalization of the equations (1) of the theory 
of analytic functions. The inverse square law appears as the 
simplest singularity corresponding to w = c/z (compare formulas 
(3) and (24)) ; the exponent in the denominator is equal to the 
number of dimensions in each case. The residue corresponds to 
the mass, or electric charge of the attracting point. 

In considering cases more general than the simple one just 
mentioned the ways of the forces and those of the velocities 

* Lagrange, Oeuvres, vol. 1, p . 442. 
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p a r t , a t least for a t ime . For h y d r o d y n a m i c s we have to use in 
t he general case t he equa t ions of Euler , which we t a k e in t he 
following form : 

dpu2 dpuv dpuw dpu dp 

+ + + — = X + — ; 
dx dy dz dt dx 

(27) 

dpvu dpv2 

OX 

dpWU 

dy 

dpvw dpv 

+ + 
dz dt 

Y + 
dp 

dy 

dpwv dpw2 dpw dp 
1 1 1 = Z ~\ ; 

ox dy dz dt dz 
dpu dpv dpw dp 

— + — + — + — = o, 
ox dy dz dt 

where p is t he pressure and p is t he dens i ty . T h e first th ree of 
these equa t ions correspond to t h e th ree equa t ions (23), and are 
no th ing b u t the i r t r ans la t ion in to t he language of con t inuous 
d i s t r i bu t i on ; t h e las t one is a t rans la t ion of t he equa t ion 
dm/dt = Of which is usual ly no t wr i t t en ou t explicit ly in t he dis­
cre te case. 

T h e first t h ing we not ice a b o u t these equa t ions is t h a t t h e y 
deal n o t wi th t he quan t i t i e s u1 v, and w, b u t wi th q u a d r a t i c ex­
pressions in t h e m . In t he s implest case n = 2, replacing the pres­
sure p by %(u2+v2) ( in ternal pressure) , t he dens i ty by 1, and the 
forces b y zero, we get t he equa t ions 

dUu2 

(28) 
dx 

v2) duv 

— + — = o, 
dy 

duv dh(v2 — u2) 

+ — = 0, 
dx dy 

which a re exact ly t he equa t ions (7) for w h a t we have called W 
in t h e t heo ry of ana ly t i c funct ions. W i t h t he same assumpt ions , 
b u t for n = 3, we ge t 

(29) 

d^(u2 - v2 

dvu 

dx 

dwu 

+ 

dx 
di(-

w2) duv duw 

—L + + = 0, 
dy dz 

•u2+v2 

dwv 

+ + 
dx dy 

dy 

ôi(-

• w2) dvw 

__+ o, 
dz 

-u2 — v2-\-w2) 

dz 
= 0. 
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We naturally ask about the relation between these differential 
equations for the quadratic quantities and the differential equa­
tions written out before for the linear quantities. As in the case 
n = 2, the equations for the second-degree quantities are conse­
quences of those for the linear quantities, but in contradistinc­
tion from that case we cannot pass here from (29) to (26) ; this 
raises the question : what additional conditions have to be im­
posed on the quadratic quantities so that the linear equations 
would be satisfied ? 

The form of Euler's set of equations suggests the considera­
tion of the case ^ = 4, by considering time as the fourth coordi­
nate and / as the fourth component of the vector (u, vy w, f). 
Taking this suggestion seriously means making the first step 
toward the special theory of relativity. Without entering into 
details we must mention that velocity is represented in this 
theory by a four-vector, whose components we may denote by 
uir and that if we consider from this point of view matter in the 
absence of forces, we arrive at a set of equations which constitute 
the generalization for four dimensions of (28) and (29). 

We shall now return to the consideration of forces. We spoke 
of the inverse square law without mentioning the physical na­
ture of the forces. Historically, the gravitational field was the 
one for which in the time of Newton the inverse square law was 
formulated. But we are now more interested in the electrostatic 
and magnetostatic fields to which the same law has been applied 
in the nineteenth century. To each of these fields taken sepa­
rately that law, and therefore the equation (25), applies. As soon 
as the time is introduced, however, that is, as soon as we begin 
to consider fields changing with time, interaction between these 
fields appears, and we have to consider them together. The re­
sult may be formulated as follows. In the static case the quanti­
ties dY/dz-dZ/dy, dZ/dx-dX/dz, dX/dy-dY/dx and dM/dz 
— dN/dy, dN/dx — dL/dz, dL/dy — dM/dx were zero. For the 
case when the fields change with time, Faraday's discoveries 
coupled with Maxwell's imagination resulted in equating these 
quantities (I omit the factor of proportionality), respectively, 
to dL/dt, dM/dt, dN/dt and -dX/dt, -dY/dt, -dZ/dt, so that 
together with the equations expressing the vanishing of the 
divergences we have the following set of equations for electro­
magnetic forces in matter-free space (Maxwell's equations) : 
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(30) 

dY dZ dL 

dz dy dt 

dZ dX dM 
— — —: 0 

dx dz dt 

dX dY dN 
— — — o dy dx dt 

dL dM dN 

— + — + — = o, 
dx dy dz 

dM 

dz 

dN 

dx 

dL 

dy 

dX 

dx 

— 

— 

+ 

dN dX 
1 = 0, 

dy dt 
dL dY 

1 = 0, 
dz dt 

dM dz 
1 = o, dx dt 

dY dZ 
+ = 0. 

dy dz 
It seems surprising now that until 1907 it was not noticed that 
the best way to write these equations was the four-dimensional 
way already suggested by the form of Euler's equations (27). 
The explanation is that the equations were encumbered with 
matter and three-dimensional vector analysis. Moreover, the 
really fundamental things have a way of appearing to be simple 
once they have been stated by a genius, who was in this case 
Minkowski. 

Another thing is almost as remarkable—the equations at 
which we have arrived are, except for some differences in sign, 
the same as the equations (20) of the Volterra theory for n = 4 , 
r = 2. I t remained for L. Hanni* to notice this fact in 1910. We 
have thus again in mathematical physics a generalization of the 
theory of analytic functions. The difference in sign is of extreme 
importance in physics. I t may be stated that without this dif­
ference our world would have been dark; the minus sign that 
appears in the above quantities makes light possible. In this 
connection we might mention that if we eliminate all dependent 
functions but one from Maxwell's equations, we obtain, due to 
this difference in sign, instead of the Laplace equation that ap­
pears as a result of such elimination in the cases considered 
above, an equation of the type 

(31) 
d2u d2u d2u d2u 

dx2 dy2 dz2 dt2 ~ ' 

* L. Hanni, Ueber den Zusammenhang zwischen den Cauchy-Riemannschen 
und den Maxwellschen Differentialgleichungen, Tôhoku Mathematical Journal, 
vol. 5 (1910), pp. 142-175. 
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which differs from the Laplace equation by the minus sign be­
fore the last term. This is the so called wave equation; it received 
its name from the fact that it is often used in describing wave 
phenomena, especially in acoustics, and in optics in connection 
with what is called the wave theory of light. From the mathe­
matical point of view the introduction by Maxwell of the elec­
tromagnetic theory of light may be considered as essentially the 
substitution for a theory based on one second-order partial dif­
ferential equation of a theory based on a. system of first-order 
equations (of which the second-order equation is a consequence). 
We want to emphasize this fact in view of an analogous situa­
tion to be mentioned later. We may mention also the fact that 
the main importance of this substitution seems to lie in its ef­
fect in introducing boundary conditions. 

The lack of beauty due to the difference in sign may be reme­
died by the introduction of slight modifications in our notations. 
If we use instead of (21), the notations 

( x = Xi, y = X2, z = Xz, t = ixi, 

(32) X = i/41, Y = i/42, Z = i/43, 

[ L = /23, M = / 8 l , N = ƒ12, 

and instead of (19) the relations 

(33) ira = /23, ir& = ƒ31, ir& = ƒ12, ^V23 = ƒ41, i?zi = ƒ42, iru = ƒ41, 

the equations of Maxwell assume exactly the form (20). The in­
troduction of these notations constitutes the second step toward 
the special theory of relativity. 

4. Second-Degree Quantities in Electrodynamics. We noticed 
before that in Euler's hydrodynamic equations (27) the quanti­
ties u, v, w appear not directly, but as certain quadratic com­
binations; in the two- and three-dimensional cases written out 
above (28) and (29) the quantities subjected to differentiation 
are the elements of the matrices 

/ i(u2 - v2) uv \ 

\ uv i f r » - « » ) / ' 
(u2 — v2 — w2) uv uw 

VU 7j(v2 —- U2 — W2) VW 

wu wv %(w2 — u2 — v2) 
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The differential equations (28) and (29) may be expressed by 
stating that the divergences of these matrices vanish. In four-
space (special relativity theory) there also appears a matrix of 
the same nature which we write out in index notation: 

(35) Mij = p(uiUj — \hijUau£). 

In the electromagnetic theory analogous combinations of 
force components were introduced by Maxwell under the name 
of stress components. When we treat, in three-dimensional 
space, electric and magnetic forces separately, the stresses are 

ELECTRIC STRESSES MAGNETIC STRESSES 

X2 - e XY XZ L* -m LM LN 

YX Y2 - e YZ ML M2 - m MN 
(36) 

ZX ZY Z2 - e NL NM N2 - m 
with e = X2 + Y2 + Z2; with m = L2 + M2 + N2. 

We may note that if we impose on the forces the equations 
(25), the divergence of the stress matrix vanishes, but we shall 
return to the question of differential relations later. We saw that 
the electric and magnetic forces are interrelated, and that the 
situation is best expressed in four-dimensional notations. There­
fore there seems to be no reason for keeping the electric and 
magnetic stresses apart, and so we combine the above matrices 
by simply adding the corresponding elements together. We ex­
tend the three-rowed matrix thus obtained into a four-rowed 
matrix by adding a fourth row and a fourth column. We shall 
not write out this four-rowed matrix in full, nor shall we explain 
the physical meaning (which is a very important one) of the new 
additional quantities. Instead we shall write it in short notations 
which will bring out even more clearly the relation to the theory 
of analytic functions. We have here two surface vectors ƒ and r 
represented by four-rowed matrices as our first-degree quanti­
ties. In terms of them, the four-rowed matrix of the stresses is 

(37) E = UP + r*), 

or, in index notation, 

(38) Eij = J ^(fiafaj + riaTaj). 

Here / 2 and r2 may be considered as matrices obtained from the 
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matrices ƒ and r by squaring them in the manner employed in 
squaring a determinant. The expression obtained is a matrix 
which depends quadratically on the force matrix. The relation 
between the force matrices ƒ and r on the one hand, and the 
matrix E on the other is analogous to the relation between the 
first-degree and the second-degree quantities in the theory of 
analytic functions. In some ways it reminds us of the quantity 
W. I t is, like W, a matrix, and the analogy between W and E 
guided us in the formation of E, especially in the three-dimen­
sional stage. As a finished product, however, E resembles more 
Q. In the first place, it possesses the same form (compare formu­
las (6)) ; in the second place, the relationship between E and Q 
appears very clearly when we ask ourselves whether the forces 
given by ƒ are determined when E is given. Just as in the case 
of analytic functions, if (X, F, Z) and (L, M, N) produce cer­
tain stresses, the quantities 

( X cos ó — L sin #, Y cos <j> — M sin 6. Z cos 6 — N sin 6 , 

( X s in (j> + L cos <j>, Y s in <j> + M cos <f>, Z s in <j> + N cos <j>, 

where <t> is an arbitrary function of x, y, z> and /, produce the 
same stresses. These formulas are analogous to (9). 

We pass now to the consideration of differential equations 
satisfied by the stresses. The matrix E, as was the case with W 
in the case of an analytic function, satisfies, as a result of (ƒ, r) 
satisfying Maxwell's equations, a set of linear differential equa­
tions which may be written in the form 

dEia 
(40) — = 0, 

axa 

and is strictly analogous to equations (7). This analogy appears 
more clearly when the last equations are written out in com­
ponents. But these equations do not constitute a sufficient con­
dition for a stress matrix to be derived from forces which satisfy 
Maxwell's equations. Subjecting to Maxwell's equations (30) 
the above expressions (39) for the forces corresponding to a 
given stress matrix, we obtain a set of eight equations on the de­
rivatives of the heretofore arbitrary angle </>. The vanishing of 
the divergence of E (see equations (40)) is exactly the set of con­
ditions for algebraic compatibility of these equations. In addition 
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to that, however, certain integ?'ability conditions must be satis­
fied. They furnish another non-linear set of differential equa­
tions for E. We shall not write out these equations,* but for the 
purpose of further reference we shall put down the equations on 
the derivatives of the angle 0, which (derivatives) we shall de­
note by 01, 02, 03, 04 ' 

(41) 

dY 

dz 

dZ 

dx 

dX 

dy 

dZ 

dy 

dX 

dz 

dY 

dx 

dL 

dt 

dM 

dt 

~ N<t>2 + M03 - X04 0, 

+ N4>i - U3 - 704 = 0, 

dN 
M<t>i + Z02 - ^04 

dt 
0, 

dX dY 

dx dy 

dZ 

dz 
Z0i - M02 - Nfo = 0, 

dM dN dX 

dz dy dt 

dN dL dY 
1 £01 + X03 

dx dz dt 

70s - £04 = 0, 

Af04 = 0, 

dL dM dZ 
+ + 701 - X02 - #04 = 0, 

dx dy dt 
dL dM dN 

+ + + X0i + 702 + Z03 - 0. 
dx dy dz 

These equations are the analogs of (10). 
In what precedes we have treated separately the components 

of the forces and the components of matter corresponding to the 
right hand sides and the left hand sides of the original equations 
of motion (23). Although in the description of the further fate 
of these quantities the theory of analytic functions—our guiding 
light—ceases to play a leading role, we do not want to abandon 
forces and matter without mentioning that they become happily 
reunited by simply adding together the corresponding elements 
of the matrices M^ (35) and En (38) into the elements of a ma-

* See G. Y. Rainich, Transactions of this Society, vol. 27 (1925), p. 129. 
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trix Ta, and that the equations of motion may then be written 
simply by saying that the divergence of this new matrix is zero. 
The new equations of motion differ slightly from the old ones 
but seem to be in keeping with experiments. At this point an­
other of the theories of pure mathematics becomes of extreme 
importance, namely, the theory of surfaces together with its 
generalization, the theory of curved spaces (riemannian geome­
try). A discussion of the interrelation between these two the­
ories* of pure mathematics, and also the application of the 
second to physics, space does not permit to take up here. It will 
suffice to say that the identification of the matrix T^ with a 
tensor appearing in the theory of curved spaces leads to the gen­
eral relativity theory, f 

5. The Schroedinger Equation. In its first stages of develop­
ment, the quantum theory seemed to be very far removed from 
the continuous theories of which the theory of analytic functions 
is a model, but further development resulted in a surprising 
change which we shall sketch here. 

We shall restrict our considerations to what the physicists call 
the hydrogen atom, or, more precisely, the spectrum of a hydro­
gen atom. We shall only mention the older theory (1913-1925) 
due to Bohr, which was based on the analogy with the solar sys­
tem : a nucleus in the center and an electron going around it and 
(in the last stage of the theory) spinning at the same time. There 
were two points of difference: in the first place, not all orbits 
consistent with Newton's law or with Kepler's law, were per­
mitted, but only a discrete set of orbits; in the second place, the 
different spectral lines were associated not with orbits but each 
line was associated with two orbits ; the conception was that ra­
diation is produced by an electron jumping from one orbit to the 
other. 

We have here, just as at the beginning of mechanics, discon­
tinuity in the distribution of matter, but it is accentuated by 
discontinuity in the set of permissible orbits and discontinuities 
in motion (jumps). The trend from discontinuity did not appear 
here until 1926 when the fundamental papers by Schroedinger 

* See G« Y. Rainich, Ueber die Analytischen Funktionen auf einer Minimal-
flaeche, Mathematische Annalen, vol. 101 (1929), pp. 386-393. 

t These questions were taken up in the Symposium lecture. 
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were published,* although it must be said that his work was not 
entirely independent of some ideas of his predecessors. From our 
point of view it is interesting to note that Schroedinger formu­
lates his idea in the title of his papers as an at tempt to interpret 
a certain set of numbers that appear in analyzing spectra as the 
set of characteristic values (Eigenwerte) of a partial differential 
equation. (This corresponds to the transition in mechanics from 
the theory of a moving point to the theory of the motion of a 
fluid (§3).) This partial differential equation in the simplest 
case is 

(42) d2u/dx2 + d2u/dy2 + d2u/dz2 - Vu + Eu = 0. 

Here u is a complex-valued field function, F is a given function 
(in the special case we are considering, the potential of the field 
of forces in which the electron moves), E is an undetermined 
constant, and the units have been chosen in such a way as to 
simplify the coefficients. I t is surprising that equations of this 
type have not been considered in connection with spectra be­
fore. In acoustics the equation 

(43) Au + k2u = 0 

was used to determine the different states of vibration of a solid. 
The different characteristic values, that is, the values of k for 
which there exist solutions of this equation compatible with cer­
tain boundary conditions depending on the geometric configura­
tion and the physical properties of the sounding body, were 
taken to correspond to the different pitches of sound produced. 
In quantum optics, however, we have instead of boundary con­
ditions the additional condition that the solutions should be one-
valued and continuous. This should be compared with the con­
ditions imposed on the solutions of differential equations in the 
derivation of the power series as a general analytic function in 
(f), §1. The meaning of the potential V is that by changing it 
we obtain different sets of characteristic values, that is, different 
spectra, so that it takes over some functions of the boundary 
conditions, because in acoustics we ordinarily get different sets 
of characteristic values by taking different boundary conditions. 

* E. Schroedinger, Quantisierung als Eigenwertproblem. First paper, Annalen 
der Physik, vol. 79 (1926), p. 361; second paper, ibid., p. 489; third paper, ibid., 
vol. 80 (1926), p. 437. 
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We shall now trace, following Sommerfeld,* the series of 
changes that the Schroedinger equation underwent, but we shall 
first call attention to the fact that the connection with the the­
ories discussed heretofore is established by the fact of the appear­
ance of the Laplace differential operator Au = d2/dx2-\-d2/dy2 

+d2/dz2. To begin with, time does not appear in the equation, 
but we may introduce it by reversing the process by which we 
got rid of d in the equation (11). We thus arrive at the equation 

(44) Aw - Vw + i- (b/bt)w = 0, 

which contains differentiation with respect to time but does not 
contain time explicitly in its coefficients; the substitution 

(45) w = ueiEt 

brings us back exactly to the equation we had before. 
This substitution is of the same nature as (12) employed be­

fore while we were obtaining a power series as a solution of the 
Cauchy-Riemann equations. Its justification is here the same 
(the equation does not contain t explicitly) f and the result is 
analogous; the general solution of the equation (44) appears as 
a series whose terms are arbitrary constants multiplied by func­
tions of the type une

iEn\ where un depend on x, y, z only, and 
En is a discrete set of constants. 

The equation we are considering now is not quite satisfactory 
from the aesthetic point of view ; its form is not in keeping with 
the principle of relativity which for our present purposes may be 
formulated as the principle of treating time and space coordi­
nates alike ; but it was found that the equation 

(b y /b y fb Y 
\bx / \by / \bz ) 

(46) 
(b Y 

- ( h </>4 I w + A2w = 0, 
\bt ) 

* A. Sommerfeld, Atombau una Spektrallinieny Wellenmechanischer Er-
gaenzungsband, Braunschweig, 1929, pp. 119-120. 

f This situation is a special case of a more general situation when the equa­
tion allows a one-parameter group of transformations (the one-parameter group 
of transformations being in this case t'=t+p) ; in the general case we also may 
use a similar device which results in obtaining a sequence of equations involv-
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which is more satisfactory in form, gives results which are only 
slightly different from the results obtained from the preceding 
equation if we set 01=02=03 = 0, 04= V, and give to the con­
s t a n t s , which is the mass constant, an appropriate value. This 
improvement of the form without affecting much the numerical 
results might be compared with the transition from the original 
Euler equations to the equations mentioned at the end of §4. 

We may say that we have now essentially a Laplace-like equa­
tion. More precisely, except for the potential <f>i and the mass 
term, we have the wave equation. Analogy suggests that we con­
sider two things : second-degree quantities and first-order equa­
tions, of which the Laplace-like equation is a consequence. 

Beginning with second-order quantities, we notice that w is 
a complex number and this suggests the consideration of w-w. 
If we take for w a particular solution corresponding to one term 
(13) of the power series in the case of analytic function, namely, 

w = ueiEt, 

we have w-w = u-ü and we see that t has dropped out. If we take 
a linear combination of such terms, however, let us say of two 
such terms, 

(47) w = aiUieiE^ + a2u2e
iEit, 

we get 

(48) W' W = diaiUiÜx + d2a2U2Ü2 

+ aia2Uiü2e
i(EL-E*)t + a2a1u2ü1e

i(E*~Ei)t. 

The E's are interpreted as energy values, and the set of dis­
crete values of the E's corresponds to the set of orbits in the old 
Bohr theory. As a result of our forming the second-degree quan­
tity w-w we see then that we obtained in a natural way the fact 
that not the single orbits but pairs of orbits, not the separate 
energy values, but their differences appear in our formulas; or 
we may say, the transition from energy values to differences of 
energy values which in the Bohr theory led to the introduction 
of jumps, is achieved in the continuous theory by passing from 

ing one less variable but involving a sequence of numbers, corresponding to 
the numbers k in the case of an analytic function; these numbers are used in 
physics as quantum numbers. 
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the linear quantities w to the quadratic quantities w- w. Another 
discontinuity is gone. I t must be added that there remain ap­
parently great difficulties in the interpretation of the coefficients 
ai in the preceding formulas which temper the enthusiasm which 
was aroused in the minds of physicists when the situation de­
scribed above was first discovered by Schroedinger. 

6. The Dirac Equations. On one occasion before, in pursuing 
the analogy between analytic functions and wave mechanics, we 
reversed our steps ; in analytic functions we used the substitu­
tion w = Peikd to eliminate a variable ; in wave mechanics we used 
it to introduce a variable (/). We come now to another case of 
that nature. In analytic functions we arrive at the Laplace equa­
tion from a system of first-order equations. Here we already have 
a (generalized) Laplace equation and want to arrive from it at 
a system of first-order equations of which it is a consequence. 
Strictly speaking, we already have a solution of this problem. 
We saw that as a result of elimination of all but one component 
from Maxwell's system we arrive at a wave equation. I t was 
also noted that the introduction of Maxwell's equations in op­
tics may be considered as such a reversal from a second-order 
equation to a set of first-order equations. Dirac* achieved the 
same transition in wave mechanics, but he found another very 
remarkable set of first-order equations which lead to the wave 
equation. There are many attempts to substitute, for his equa­
tions, equations very closely related to Maxwell's equations, but 
it is not clear at present whether such an at tempt will ever prove 
successful. We shall now explain Dirac's method. We strip the 
equation (46) of its unessential features, that is, the potentials 
and the mass-term. What remains we write in the form 

(49) (X2 + F2 + Z2 - T*)w = 0, 

where 

d d d d 
X = —, Y = —, Z = — ; T = — ; 

dx dy dz dt 

and try to find a first-degree operator whose square is 

* P. A. M. Dirac, Quantum theory of the electron, first paper, Proceedings of 
the Royal Society, (A), vol. 117 (1928), pp. 610-624; second paper, ibid., vol. 
118 (1928), pp. 351-361. 
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X2+Y2+Z2-T2. We write it in the form aX+(3Y+yZ+8T, 
and expressing our requirement, we get 

(50) a2 = p2 = 72 = ~ à2 = 1, ap + pa = 0, etc. 

In order to simplify our discussion we shall consider the two-di­
mensional case. The solution of the equations a 2=/3 2 = l, 
afi+Pa = 0 in numbers is impossible, of course, but we can find 
matrices, viz., 

<si> « - ( i _"> " - ( " I)-
which satisfy these conditions. Formally, then, the equation 
(aX+PY)w = 0 is equivalent to (X2 + Y2)w = 0, that is, to the 
equation of Laplace; or, at the least, the solutions of the first 
equation must satisfy the second. But how shall we interpret 
the operator with matrices? Among many roles in which the ele­
ments of a matrix appear, one of the most important is the role 
of coefficients of a linear transformation. Since we have two-
rowed matrices, we consider two-component vectors (u, v). Now 
a transforms (u, v) into (u, —v); (3 transforms («, v) into (v, u). 
Our equation (Xa+Yfi)w = 0 gives then exactly the Cauchy-
Riemann equations (1). 

Returning to the four-dimensional case we would expect to 
arrive there at four-rowed matrices; this suggests four-compo­
nent vectors, and that is what Dirac* and Darwin f found. After 
the equations have been obtained, we put back the potentials 
and the mass constant A where they belong. It is important to 
note that, without potentials, the transition from one second-
order equation to four first-order equations would be only a 
change of form; it would not affect the physical results. I t does 
make a great deal of difference, however, whether we put in the 
potentials before or after the transition. Dirac's theory fits the 
experimental facts still better than Schroedinger's. The transi­
tion from Schroedinger's theory to that of Dirac plays the same 
role as the introduction of spin in the Bohr theory. It was noted 

* Dirac, loc. cit. 
t C. G. Darwin, The wave theory of the electron, Proceedings of the Royal 

Society, (A), vol. 118 (1928), pp. 654-680; On the magnetic moment of the elec­
tron, ibid., vol. 120 (1928), pp. 621-631. 
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that the potentials play a role analogous to that played by 
boundary conditions in other cases, and it has been mentioned 
in connection with the introduction of Maxwell's equations in 
optics that the transition from second-order to first-order equa­
tions there was also important in connection with its effect on 
boundary conditions. 

We now write out Dirac's equations essentially in the form 
given them by Darwin: 

(52) 

where 

P* = 

(PA + A)$i + (pi - p*)fA + pzfa = 0, 

(pA + A)f2 + (pi + ip*)fo - PZ^A = 0, 

(PA - A)ypz + (pi - ip2)^2 + p$Pi = 0, 

(PA - A)\f/4+ (pi + ip2)\pi — pzfa = 0, 

# d d d d 
i (- i$h px = \- (j)h p2 = 1- fay pz = — + fa 

dt dx dy dz 

In these equations we split up the complex quantities into real 
and imaginary parts, using the notations 

(53) ih = N + iP, fa = L + iM, 1A3 = iZ - U, ^ = iY - X. 

Then the equations become 

dY dL 

dz dt 

+ AM + Zfa - Ufa - Xfa + M fa = 0, 

dM 

dt 

- AL+ Ufa + Zfa - Y fa - Lfa = 0, 

ÔY dX dU dN 
(54a) 

du dz 
dx dy 

dz du dx 

dX dU 

dx dy dz dt 

- AP + Xfa + Y fa + Zfa + Pfa = 0, 

dX dY dZ dP 

dx dy dz dt 

+ AN - Y fa + Xfa - Ufa + Nfa = 0, 
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[ dP dN dM dX 

dx dy dz dt 

+ AY + N<t>1- P<l>2 - L<j>z - F04 = 0, 

dN dP dL dY 

+ + + 
dx dy dz dt 

-AX + P<tn + N<t>2 - Mfo + X4>4 = 0 
\ dM dL dP dZ 

dx dy dz dt 

+ AU + L<I>1 + M<j>2 + Nfo - C/04 = 0, 

dL dM dN dU 

+ + + 
dx dy dz dt 

( + AZ - Mfa + L<t>2 - P<t>i - Z<£4 = 0. 
The first thing we notice about these equations is that they are 
a generalization of Maxwell's equations (25). In fact, if we make 
l/ — p = Qi and also make all the potentials and the mass con­
stant zero, we get exactly Maxwell's equations. Let us now keep 
U and P general but neglect the potentials and the mass con­
stant, that is, neglect the last five terms in each equation. The 
resulting system is also a generalization of Maxwell's system, 
and therefore of the Cauchy-Riemann system (1). I t has been 
investigated from this point of view by Iwanenko and Nikolski,* 
who consider all the eight components of Dirac as the compo­
nents of a biquaternion, and, extending the investigation of 
Hanni,f obtain the equations as integrability conditions, that is, 
write certain integrals whose vanishing is equivalent to the orig­
inal equations. I t may be noted that these equations do not 
come under the Volterra theory. 

A very interesting point about these equations is that al­
though they are relativistically invariant, (that is, if we pass to 
another coordinate system, we may express exactly the same 
thing the equations tell us by a system of equations of the same 
type, with different values of the components, of course) the re-

* D. Iwanenko and K. Nikolski, Zeitschrift fiir Physik, vol. 63 (1930), p. 
129. 

t Loc. cit. 
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lations between the values of components in one system of co­
ordinates and the values in another system, that is, the trans­
formation formulas, are not of the type considered in ordinary 
tensor analysis. Much has been made of this circumstance. 
Weyl* connected it in a very beautiful way with the theory of 
representation of groups. Van der Waerdenf invented a new 
tensor analysis, called spinor analysis, that takes care of the 
situation in a satisfactory way. 

The situation takes a different aspect, however, when we in­
troduce the second-order quantities. In the Schroedinger theory 
there was only one complex-valued component. We considered 
only one real-valued quadratic expression in it, namely its norm 
(see (48)). Now, as the result of the transition to first-order 
equations, we have many more components. Quite early in the 
development of the subject, in the first papers by Dirac and 
Darwin, a four-vector, two scalars, and a six-vector were intro­
duced, whose components are quadratic in the i^'s, and are 
transformed according to the ordinary formulas of tensor calcu­
lus. Further investigation showed the existence of still another 
four-vector whose components are quadratic in the ^ ' s . As a 
result of the fact that all these components are expressed in 
terms of the four f s there exist between them many relations. 
Limiting our attention to the two f our-vectors, we find that they 
are perpendicular and of equal length. J This reminds us of an­
alytic functions; we ask ourselves whether the divergences of 
these vectors vanish and find that they do, in the case when the 
mass constant is zero. We have thus in the Dirac theory two 
equal and perpendicular vectors with vanishing divergences. 
The theory seems then to provide a method of studying such 
situations, which, as we saw before (beginning of §2), involve 
non-linear relations, by means of linear equations, because the 
Dirac equations are linear. The method is based on introducing 
auxiliary quantities in such a way that the quadratic relations 
are the result of the fact that the two vectors are expressed in 
terms of the same auxiliary quantities. Taking this hint we find 

* H. Weyl, Gruppentheorie una Quantenniechanik, Leipzig, 1928, §§25 and 
39. 

t B. L. van der Waerden, Göttinger Nachrichten, 1929, p. 100. 
t O. Laporte and G. E. Uhlenbeck, Physical Review, vol. 37 (1931), pp. 

1396 and 1553. 
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without difficulty that the components of two equal and per­
pendicular vectors in ordinary three-space (14) may be ex­
pressed as follows: 

(55) 

f fi = YZ - XU, n = §(X2 + Z*-Y>- U2), 

U = HX2 + Y2-Z2- U2), r2 = XU + YZ, 

[fs = XZ+YU, rz=ZU-XY. 

If we subject these vectors to the condition (16) that their di­
vergences should vanish, we obtain for the auxiliary quantities, 
X, Y, etc., a system of equations, which, although not linear, is 
a consequence of the linear system : 

dX dU dY 
J — Q 

dx dy dz 

dY 
_ 

dx 

dZ dX 
1 = o dy dz 

(56) 
dZ dY dU _ dU dX dZ 
dx dy dz dx dy dz 

which in many ways is similar to the Dirac system with poten­
tials and mass constant neglected. 

In conclusion, a word concerning the potentials. As in the 
other cases in which we considered second-degree quantities, we 
may ask the questions whether the first-degree quantities are 
determined by the second-degree quantities, and what differ­
ential conditions are imposed on the second-degree quantities 
by the differential equations to which the first-order quantities 
are subjected. The answer to the first question is that the first-
degree quantities are not completely determined by the second-
degree quantities, but are determined to within a variable 
angle, just as (u, v) are not determined by u2+v2, or r and ƒ by E. 
In answering the second question, we have to eliminate there­
fore this variable angle, just as in the cases we had before. With­
out entering into details we may state that if we start with Di­
r a i s equations without potentials we obtain in a way analogous 
to that by which we obtained (10) and (41), a system of exactly 
the form of the Dirac equations with potentials, except that the 
(f)ys are the derivatives of the arbitrary angle. 
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