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A PROOF OF THE IDENTITY OF THE RIESZ 
INTEGRAL AND THE LEBESGUE INTEGRAL* 

BY W. M. WHYBURN 

1. Introduction. In Acta Mathematica, volume 42, pages 
191-205, Friedrich Riesz developed a theory of integration in­
dependent of the theory of measure of point sets except in so far 
as sets of measure zero were involved. His theory yields an 
integral which he showed to have many of the properties of the 
Lebesgue integral and which he showed to exist and to be identi­
cal with the Lebesgue integral when this latter integral exists. 
Riesz' treatment yields a theory of measure which has the 
essential characteristics of the Lebesgue theory. Riesz does not 
seem to have proved that his development yields an integral 
which is identical with the Lebesgue integralf and that his 
notion of measure is the same as the ordinary notion. The 
present paper does show the entire identity of the Riesz integral 
and» the Lebesgue integral. The terminology and notation of 
Riesz* paper are used. 

THEOREM. A necessary and sufficient condition that a bounded 
function on X: a^x^b be measurable is that there exist a sequence 
of simple functions% which approaches this f unction almost every­
where on X. 

2. Proof of Necessity.§ Let f(x) be bounded and measurable 
on X and let a method of subdivision of X be chosen in such a 
way that the length of the longest subdivision approaches zero 
as the number of these subdivisions becomes infinite. f(x) is 
Lebesgue integrable on X. Let a = Xo<Xi<x2< • • • <xn = b be 
the subdivision points at the ^th stage and let 

* Presented to the Society, April 11, 1931. 
f At the bottom of page 199 of Riesz' paper one finds a statement which 

indicates that he suspected a close relationship between or even the identity of, 
the two integrals; but he makes no positive statement, and gives no proof. 

t Also called step f unctions or horizontal f unctions. 
§ This part of the theorem is well known. A proof is included here for com­

pleteness. 
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<t>n(X) = I 
%) %i—l X% %%— 1 

on Xi-i<x<Xi, (i = l, 2, • • • , ^ ) . Since F(x)=fl(t)dt is abso­
lutely continuous on X, its derivative exists and is equal to f(x) 
almost everywhere on X. Let A be the point set of zero mea­
sure that is made up of all points of X for which F'(x) fails 
to exist together with all subdivision points. Let x = p be any 
point of X — A and let the notation be chosen so that Xi<p 
<xi+i for each n. We have 

/•«tfi f(x)dx rp f(x)dx r T x m f(x)dx 

Mp) = J _ = -——+ J 

*)x% Xi-ifX X% %}x{ p Xi L *J p (1) 
rpf(x)dx 1 

Jxi p — Xi J 

^tt-i ~ p 

ffi+i — p 

Since (̂ *-+i —/>)/(^t-+i —^») < 1 and each of the terms in the 
bracket of (1) approaches F'(p) =/(i>), it follows that the second 
term of the right hand side of equation (1) approaches zero 
when n becomes infinite. The first term on the right hand side 
of (1) has Ff{p) =ƒ(/>) for its limit as n becomes infinite (since 
Xi—>p) and hence l i m ^ ^ n ^ ? ) =f(p). We have therefore shown 
tha t {<£n 0*0 } approaches ƒ (#) almost everywhere on X. We also 
note that the area under </>n(x) is Jj{x)dx for each n. 

3. Proof of Sufficiency. We give two proofs of this part of the 
theorem. Let {(/>n(x)} be a uniformly bounded sequence of 
simple functions approaching f(x) almost everywhere on X 
(such a sequence can be constructed from the set given in the 
theorem by substituting the bounds of f(x) for portions of func­
tions which exceed these bounds in numerical value). By 
EgerofFs theorem* {</>n(#)} approaches ƒ(#) uniformly on X 
except for a set of points of arbitrarily small outer measure. Let 
M be any constant. We show that the sets on which f(x) > M, 
fix) < My and f(x) = M are measurable. Let e be an arbitrarily 
assigned positive number and let N% be chosen so that for all 
n^Ni and for all x on X except for points of a set of outer 
measure less than e/2i+1

t \f(x)—<l>n(x)\<l/2i. Let Gi be the 

* See Hobson, Functions of a Real Variable, 1926, vol. 2, p. 140. 
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finite set of intervals on which <f>Ni(x)>M-\-\/2\ With the pos­
sible exception of a set of points of outer measure less than 
e / 2 m , ƒ(#) > M on d. The set^Gi that is obtained when i takes 
on all positive integral values may be replaced by an at most 
countably infinite set g of non-overlapping intervals which has 
the same interior. Let L be the sum of the lengths of the intervals 
of g and note that g contains all points of X for which ƒ(x) > M 
except for points of the null set on which {<f>n(x)} does not con­
verge to ƒ(x). The subset of g on which f(x)^M is of outer 
measure less than^ 1

0 0 €/2 î + 1 <e and hence the inner measure of 
the set on which ƒ (x) > M differs from L by less than e. The outer 
measure of the set on which ƒ (x) > M cannot exceed L since g 
is an admissible covering of this set. The set on which ƒ (x) > M 
is therefore measurable since its inner and outer measures differ 
by an arbitrary number e. Similar reasoning shows that the set 
on which ƒ (x) < M is measurable. The set on which ƒ (x) = M is 
measurable, since it is the difference between the measurable set 
X and the sum of the two sets whose measurabilities have just 
been demonstrated. Hence f(x) is measurable on X. 

4. Second Proof of Sufficiency. We use the Baire classification 
of functions.* Let A be the set of all points of X a t which any 
function of {(t>n(x)\ is discontinuous and let B be the set of 
points at which \4>n{oc)} does not approach f(x). The set 
C = A+B is of measure zero and the sets X — A and X—C are 
dense in themselves. For each n, <t>n{x) is of the first classf on 
X — A. Hence ƒ(x) is of the second class on X—C. I t follows 
that ƒ (x) is measurable t on X—C and is therefore measurable 
o n l . 

The foregoing theorem shows that the class of bounded func­
tions that are integrable in the Riesz sense is identical with the 
class of bounded functions that are integrable in the Lebesgue 
sense. Riesz' results show that the two integrals are equal when 
they both exist, and we have shown in this paper that when 
either exists, the other does. The complete equivalence of the 
two integrals for bounded functions is therefore established. In 
the presence of this equivalence one needs but to examine the 

* See Carathéodory, Vorlesungen ueber réelle Funktionen, 1927, pp.393-413. 
f See Carathéodory, loc. cit., page 403, Satz 3. 
X See Carathéodory, loc. cit., page 403, Satz 4. 
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definitions of Riesz and Lebesgue for integrals of unbounded 
functions to see that the equivalence extends to such functions. 
We may therefore state that the class of functions summable in 
the Lebesgue sense is identical with the class of f unctions summable 
in the Riesz sense and the two theories lead to one and the same 
integral. As a corollary to this result we get the equivalence of 
the Riesz and Lebesgue theories of measure. 

In connection with unbounded functions it might be observed 
that one could define the integral of such a function so that it 
would exist when either the Lebesgue integral or the improper 
Riemann integral exists.* Such a definition would completely 
remove the necessity of separate treatments of Lebesgue and 
Riemann integration as it, together with the results of the present 
paper, would permit both theories to be presented simultane­
ously from the Riesz point of view. The following two theorems 
emphasize this point of view. 

A necessary and sufficient condition that a bounded function be 
Lebesgue integrable on Xia^x^bis that it be the limit f unction al­
most everyuhere of a sequence {<£»(#)} of simple functions. 

The present paper establishes this theorem. Riesz f proves the 
following second theorem. 

A necessary and sufficient condition that a bounded Lebesgue in­
tegrable function be Riemann integrable is that the sequence 
\<t>n(x) } approach the function uniformly t almost everywhere on X. 

T H E UNIVERSITY OF CALIFORNIA AT L O S ANGELES 

* Since the present paper was written, I have used the Riesz point of view 
to define an integral of an unbounded function which has this property. This 
integral is unique and it may exist when neither the Lebesgue nor the Riemann 
integral exists. I have also established a necessary and sufficient condition (in 
terms of simple functions) tha t a function (which may be unbounded) be sum­
mable in the Lebesgue sense. I t is my intention to publish these results in the 
near future. 

t Loc. cit., p. 204. 
J Riesz, loc. cit., p . 204, defines uniform approach almost everywhere on X 

to mean uniform approach in the neighborhoods of all points of X with the 
possible exception of a set of measure zero. 


