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A CONDENSED TABLE OF LINEAR FORMS* 

BY P. H. DAUS 

1. Introduction. In constructing his factor stencils,f D. N. 
Lehmer found it necessary to reconstruct the tables of linear 
forms for quadratic residues, due to the fact that all tables ex­
isting at that time contained errors.% The method of construc­
tion depended upon the observation that if a and b are numbers 
such that both belong or both do not belong to the form, then 
c^aby using the modulus of the form, belongs to the form. In 
particular, all powers of a number of the form belong to the 
form. The purpose of this paper is to indicate how a minimum 
number of entries may be made, from which all others may be 
obtained, and hence make it possible readily to check or con­
struct the form for a given D. This is done with the aid of a 
table of odd primitive roots of primes, such tables being readily 
available. 

2. The Number of Required Entries. I t is well known that the 
linear forms are of the following types : 

(1) D = 1 (mod 4), 2Dn + Tl, • • - , rh, h = 4>(D)/2, 

(2) D = 2 (mod 4), 4D» + ru • • • , r#1, t2 = 20(D), 

(3) D SEE 3 (mod 4), 4Dn + f l , . . . , rtt, h = 4>iP)f 

where each r is an odd integer less than the indicated modulus, 
such that D is a quadratic residue of 2Dn+r, whenever 2Dn+r 
is a prime for type (1), and similar statements for types (2) and 
(3), and where 0 is the to tient function, <t>(D) = 0( — D). 

Let D = ± pip2 • • • , the p's being distinct primes, and let Z~ 
be the least common multiple of pi — 1, £2—l, • • • î then the 

* Presented to the Society, November 29,1930. 
t Published by the Carnegie Institution of Washington, 1929. See also 

An announcement regarding factor stencils, this Bulletin, vol. 35 (1929), p. 684. 
% For tables of linear forms see M. Kraitchik, Théorie des Nombres, vol. 1, 

1922, pp. 164-186, and Recherches sur la Théorie des Nombres, vol. 1, 1924, pp. 
205-215. For a list of errors in these tables see D. H. Lehmer, this Bulletin, 
vol. 35 (1929), p. 865. These corrections have been republished by Kraitchik 
in his Recherches sur la Théorie des Nombres, vol. 2,1929, pp. 180-182. 
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maximum exponent to which any integer belongs modulo D is /, 
and the existence of such integers follows from the existence of 
odd primitive roots of primes. For if pi is an odd primitive root 
of pit then pi+2kipi is also a primitive root of piy and since the 
set of linear diophantine equations 

(4) pi + 2kipi = p2 + 2k2p2 = • • • = p 

always has a solution, it is possible to find a common primitive 
root of the £'s, and p belongs to the exponent / modulo D. It 
is not necessary that an integer r be a common primitive root 
to belong to the exponent /, for evidently each pi —I contains 
the factor 2, and this factor need be introduced into the ex­
ponent only once. 

If m be any integer belonging to the exponent /, such that 
(D/ri) = 1, then the powers of n are all incongruent with respect 
to the modulus of the form and account for / entries of the form. 
If tj/l = m, (j = 1, 2, 3), then it is merely necessary to seek m en­
tries rit • • • , fi, - - - , rm, such that r^rf, (& = 1, • • • , /) , and 
such that (D/fi) = 1. If D is positive and if ril,2?£ — 1, using the 
modulus of the form, then the number of required entries may 
be reduced by half by using the ± sign with each entry. 

3. Linear Forms for a Prime. Case 1. If D= ±p=z\ (mod 4), 
and if p is any odd primitive root of p, then evidently r = p 2 

belongs to the form and r is the required entry, rk, (& = 1, • • • , 
(P~ l)/2)> giving all entries of the form. Case 2. If D = ±p^S 
(mod 4), and if p is any odd primitive root of p, then D is a 
residue of either p or p + 2£. Call the proper one r. Then r 
belongs to the exponent p — 1 = h and hence the form is indi­
cated by 4=Dn+rk. 

4. Linear Forms f or D Composite. The determination of lin­
ear forms for a composite D is made to depend upon one or both 
of the following principles, illustrated by the case when D is the 
product of two primes. The method may be extended to the 
product of any number of primes, or the forms for the product 
of three primes may be made to depend upon those for two 
primes and so on. If D = p\pi, consider first the case when pi — 1 
and ^2 — 1 have no common factor other than 2. Then by in­
spection of simple tables or the method indicated by (4), a com­
mon primitive root may be found. This root belongs to the 
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exponent I and from it proper entries may be found as in Case 2 
above. Suppose secondly that / > i - l is a factor of p2 — 1, and 
that p is an odd primitive root of p2. Consider the set of integers 

(A) p,p + 2p2, p + 4^2, 

the number of entries being pi, 2pi or 2pi according as D = l, 2 
or 3 (mod 4). If D = 1 (mod 4), this set taken modulo 2pi will be 
the odd numbers from 1 to 2pi — 1 in some order, and hence will 
contain exactly the required number of r's, namely, (pi — l)/2. 
They are incongruent to each other modulo 2D and also to 
Y\ , (k = l, 2, • • • , l = p2 — 1). For r{ ^r2 = n + 2hp2 (mod p2) is 
impossible. Similarly, if D = 2 or 3 (mod 4), the set taken mod­
ulo 4£i will be the odd integers 1 to 4£i — 1 in some order, and 
will contain exactly the required number, pi — 1, of r's, all of 
which are incongruent to each other and to rf modulo 4D. 

In general iîpi — 1 and p2 — 1 have the common factor 2d, we 
may form the set (A) from the primitive roots of p2, and deter­
mine the r's. If D = \ (mod 4), there will be (pi —l)/2 of them, 
which divide into d subsets of (pi— l)/(2d) each, numbers of 
each subset being congruent modulo D, but incongruent to num­
bers of other subsets. For now n(p2~l) = 1, and r} ^r2 = ri + 2hp2 

has solutions, the number being l/(p2 — l) = (pi —I)/(2d), all of 
which belong to one subset. Similarly, if D = 2 or 3 (mod 4), the 
(pi — 1) r's divide into 2d subsets or, if we make ± entries, into 
d subsets. The selection of one r from each subset, n being a 
common primitive root or at least belonging to exponent /, gives 
the complete set of entries. 

5. Numerical Illustrations. In this manner a condensed table 
of linear forms may be constructed. We conclude with a few nu­
merical illustrations based upon multiples of 13, the smallest odd 
primitive root of whichis 7. Thenotation 2Dn+ri (1,^2, • • -,rm) 
indicates that the linear form is 

2Dn + ri, • • •, rx
k, r2rh • • • , r2rx

k, • • • , rmrx
k. 

J9 = 13 = l (mod 4), 72 = 23 (mod 26), 26^ + 23*. 

D = - 1 3 = 3 (mod 4), (£>/7)=l , 52n + 7*. 

D = 26, (A) 7, 33, 59, 85 ; 59 and 85 are r's, but since p6 ̂  - 1 
(mod 104), only one is needed. 85 = —19, hence 104^ ± 19fc. 
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D= - 2 6 , (A) as above, 7 and 85 are r's, 104n+7*(l, 85). 

Z> = 39, two entries required, (39/7) = 1, 156^ + 7*. 

Z > = - 3 9 , (A) 7, 33, 59; 59 = /-, 78rc+59fc. 

Z> = 65, (A) 7 ,33 ,59 ,85 , 111; 7 and 33 are r's, p8 = - 1 (mod 
130), so that ± signs are not available. 130w + 7*(l, 33)-

£ > = - 6 5 , (A) 7, 33, 59, 85, 111, 137, 163, 189, 215, 241; the 
r's are readily found to be those = 1 1 , 13, 17, 19 (mod 20); the 
form is 260»+33*(l f 59, 111, 137). 

D = 143 = 11X13, / = 60, m = 2, 7 is a common primitive root 
and so is 41, 7 is not an r, 7 + 2X143 = 293 is, 41 is an r. Hence 
we may use either 572^±293* or 572?* ± 4 P . 

D=-247 = - 1 3 X 1 9 , Z = 36, w = 3, the r's of the set (A) are 
indicated by underscoring, while 33 is found to be a common 
primitive root. 

(A) 7, S3} 59, 85, 111, 137,163, 189, 215, 241, 267, 293, 319, 
345, 371, 397, 423, 449, 475. The nine r's divide into three sub­
sets by making use of 3312, namely 

(33, 59, 345), (189, 293, 449), (241, 319, 371), 

and hence the form is 

494w+33*(l, 189, 241). 
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