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T H E PROBABLE ERROR OF CERTAIN FUNCTIONS 
OF T H E ERRORS MADE IN MEASUREMENTS* 

BY W. D. BATEN 

1. Introduction. This paper presents with proof and applica­
tions several theorems pertaining to the probable error of certain 
functions of the errors made in measurements. If the measure­
ments or observations are multiplied by a constant b, the proba­
ble value of functions of the error of bm will differ from the 
probable value of these same functions of the error of m the 
measurement. This article shows that there are values of b 
such that the probable value of certain functions of the error of 
bm is less than the probable value of these functions of the error 
of m. 

The probable value of certain functions of the mean are also 
treated. General frequency laws for the errors are used in the 
first theorems; these include the discrete, the continuous and a 
combination of the discrete and the continuous cases. Here 
Stieltjes integrals are used in the proofs. Special cases are 
mentioned. 

The following theorems are proven by use of general fre­
quency laws which come under the continuous case. The Gaus­
sian law is treated as special cases to the theorems. 

2. Concerning the Square of the Error of the Measurement. 

THEOREM 1. Let x be the error of the measurement m, d the 
expected value of xt and c the expected value of x2. Then under any 
law of error, whose second moment with respect to the true value a 
exists, there exist values of the constant b such that the probable 
value of the square of the error of bm is less than the probable value 
of the square of the error of the measurement, provided 

ad - c 7* 0, a2 - lad + c ^ 0. 

Under these conditions b lies between 

l{c - ad) 
1 and 1 — • 

a2 — lad + c 
* Presented to the Society, April 19,1930. 
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PROOF. Let F(x) be the probability that x lies in the interval 
(~oo , x) where x is included. Then the probability that x 
lies in (—°o, #*), where x* means that x has been deleted, is 
F(x-0). The probability that x lies at x is F(x+0)-F(x-Q)t 

the probability that x lies in the segment (xi*, #2*) is 

F(x2 - 0) - F(*i + 0) = f ' dF(*). 
^ *i+0 

Finally the probability that x lies in the closed interval (#i, #2) 
is 

F(* t) - F(xi - 0) = f 2 <*F(*) 

We have also F( — 00 ) = 0 and JF( + 00 ) = 1. If f(x) is the proba­
bility function and is continuous, then 

ƒ a: 

f(x)dx. 
- • 0 

The error of the measurement m from the true value a is 
x — a — m. The error of bm is 

x' = a — bni = a —• b(a — #) = a(l — 6) + bx. 

The probable value of (x')2 is 

(2) 

{a2(l - 6)2 + 2a(l - 6)J* + 62*2}dF(s) 
- 0 0 

= a2(l - &)2 + 2abd{\ - b) + b2c, 

which is less than the probable value of the square of the error 
of m, 

/

00 

x2dF(x) = c, 

a2(l - b)2 + 2abd(l - b) + b2c < c. 

From this inequality it is seen that b lies between 

2{c - ad) 
1 and 1 • 

a2 — lad + c 
If the law of error is a Pearson type I I I , 
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/ x\hq 

y = k ( 1 H J e~hx
y 

then b lies between 
2keh«(hq-~ah+2)T(hq+l) 

1 and 1-
a2h*(hq)hq - 2akheh«T(hq + 1) + &e^(?/z + 2)Y(hq + 1) 

provided the denominator is not zero. 

COROLLARY. Under any law of error, whose second moment with 
respect to the true value a exists and whose first moment with re­
spect to the true value is zero, there exist values of the constant b 
such that the probable value of the square of the error of bm is less 
than the probable value of the square of the error of m. These values 
satisfy the inequalities 

2c 
1 < b < 1. 

a2 + c 
The laws of error considered in the corollary include those 

which are symmetrical with respect to the true value and also 
others which are skew. 

The preceding theorem does not apply to the law of error 

h 
f(x) = 

TT(1 + h2x2) 

iot the second moment does not exist. 
If the law of error for the error of m is 

2h 
(3) ƒ ( » = y 

J TT(1 + h2x2)* 
then b satisfies the inequalities 

2 
1 < b < 1. 

a2h2 + 1 
If the error law is a Pearson type Xf, 

(4) f(x) - - |*r*l-l, 

then b satisfies the inequalities 

t Elderton, Frequency Curves and Correlation. 
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1 < b < 1. 
aW + 2 

If the error law is the Gaussian law, 

V' 
IL , - A V 

then the corollary to Theorem 1 becomes in this special case 
identical to a theorem given by Dodd.* 

If the error law for the errors of the measurement m is 
f(x) = l/(2k) in ( — k, k) and zero elsewhere, then 

2k2 

< b < 1. 3a2 + k2 

This last law is used for the law of errors which are made in 
using a table of logarithms, for here the error is constant in a 
certain interval and zero elsewhere. 

3. Concerning the Error of the Mean. If M is the mean and B is a 
constant it is desirable to know the nature of the probable value 
of certain functions of the error of BM and also the probable 
value of these same functions of the error of M. The following 
theorems will be useful in this respect. 

THEOREM 2. If the error law for the individual variable is 
of limited variation and symmetrical with respect to the true valuet 

then the error law for the mean is also symmetrical with respect to 
the true value, f 

PROOF. Let f{x)dx be the probability that the error lies in the 
interval (x, x+dx). The probability that the sum lies in the 
interval (w, u+du) is, according to a theorem given by Dodd, J 

1 f00 

pn{u) = I g(t) COS (Ut)dtf 
T JQ 

* Dodd, The error-risk of certain functions of the measurements, Monatshefte 
für Mathematik und Physik, vol. 24 (1913), pp. 268-276; Dodd, The prob­
ability of the arithmetic mean compared with that of certain other functions of 
the measurements, Annals of Mathematics, (2), vol. 14 (1912-13), pp. 186-198. 

t Theorem 2 can be proved for the discrete case. 
Î Dodd, The frequency law of a function of variables with given frequency 

laws, Annals of Mathematics, (2), vol. 27 (1925-26), pp. 12-20. 
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where the parameter u does not enter the function g(t). The 
function pn(u) is an even function and hence is symmetrical 
with respect to the origin which has been chosen as the true 
value. The law for the mean is obtained by replacing pn(u) by 
pn(nu)n, and this is symmetrical to the true value. 

In the theory of sampling from a parent population which is 
known, the standard error of the mean is equal to the standard 
error of the parent population divided by the square root of the 
number of the variâtes in the sample, provided the parent con­
tains an infinite number of variâtes.* If the true value of the 
quantity to be measured is a and is considered to be the mean 
of the parent population the standard error of the mean can in 
general be found for the mean from that of the error law for the 
individual measurements. This idea is treated also in the theory 
of expected values leading up to the Tchebychefï inequalities, t 

When the error laws for the individual errors of the measure­
ments are the same, then the expected value of the mean of the 
errors is the same as the expected value of an individual error. 
This can be treated also by sampling theory. 

THEOREM 3. Let x be the error of the measurement m, d the 
expected value of x and c the expected value of x2. Then under any 
law of error whose second moment with respect to the true value a 
exists, there exist values of the constant B such that the probable 
value of the square of the error of BM is less than the probable value 
of the square of the error of M, provided 

adn — c 7e 0, a2n —• 2adn + c T* 0. 

Under these conditions B lies between 

2(c — adn) 
1 and 1 • 

a2n — ladn + c 
The proof of this theorem is similar to that of Theorem 1. 

COROLLARY. Under any law of error, whose second moment 
exists and whose first moment with respect to the true value a is 
zero, there exist values of the constant B such that the probable value 

* C. H. Richardson, The Statistics of Sampling, a dissertation for the 
doctorate at The University of Michigan. 

t Fisher, The Mathematical Theory of Probability, pp. 104-109. 
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of the square of the error of BM is less than the probable value 
of the square of the error of M\ these values satisfy the inequalities 

2c 
1 < B < 1, 

na2 + c 
where M is the mean of n measurements and c is the expected value 
of the square of the error. 

The proof of this corollary is similar to that of the Corollary 
to Theorem 1, since Theorem 2 shows that the error law for the 
mean is such that its first moment with respect to the true value 
is also zero. 

If the law for the individual errors is (3), then the law for the 
mean of the errors is* 

1 t£Y n \ r(f) cos ( r - tan- 1^) 

îr(Â»)» à v - ï / C * » ) " ^ 1 ^ 1 + n2h2u2)r'2 

In this case the constant B satisfies the following inequalities : f 

2 
1 < B < 1, 

na2h2 + 1 
where n measurements are made. 

If the error law for the individual measurement is (4), then 
the law for the mean is J 

ç;1 n*~r)hn\ u\n~l-r 

nhe~nh\u\ 2^ 
Zi 2 ' ( « - 1 - r ) ! ( r ) l 

In this case 
4 

1 < B < 1. 
na2h2 + 2 

If the error law for the errors of the measurement m is f(x) 
= l/(2fe), then 

* Baten, Theorems concerning probability, a dissertation for the doctorate 
at the University of Michigan, 1929. Karl Mayr, Wahrscheinlichkeitsfunktionen 
und ihre Anwendungen, Monatshefte fiir Mathematik und Physik, vol. 30 
(1920), pp. 17-44. 

t These inequalities for B can be obtained most readily from the three 
inequalities for b at the end of §2 by replacing h2 by nh2; and the validity of this 
process follows from the second paragraph above Theorem 3. 

{ See Baten, loc. cit. 
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2k* 
1 < B < 1. 

3na2 + k2 

If the error law is 
2h 

f(x) = , 
ir(ehx + e~hx) 

then 
2TT2 

1 < b < 1, 
4a2h2 + T2 

and 
2x2 

I < 5 < 1. 
4wa2Â2 + T2 

If the error function is 
ph 

ƒ(*) = £ - . e-*Pkl", 
2V{\/p) 

we shall have 
2r(3/#) 

1 ^ ^ < b < 1, 
r(i/»a2;*2 + v(3/p) 

and 
2r(3/^>) 

1 ~—— < B < 1. 
T(l/p)na2h2 + T(3/p) 

Other error laws may be used. 
4. Concerning the Absolute Error of the Measurement. 
THEOREM 4. Under any law of error which is symmetrical with 

respect to the true value a, whose first moment with respect to the 
true value exists and which has only one maximum which is at 
the true value, there exist values of the constant b such that the 
probable value of the absolute error of bm is less than the probable 
value of the absolute error of the measurement m. A sufficient con­
dition for such a value is 

1 <b < 1, 
ka* + r 

where r is one-half of the mean deviation and k is the maximum 
value, and a is assumed to be positive. 

PROOF. The error \xf \ = |a — bm\ = |a(l— b)+bx\, where x 
is the error of the measurement m. The probable value of 
\x' I is 
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| a(l - 6) +bx\ f(x)dx, 
- 0 0 

where f(x) is the error law. The quantity {a(l— b)+bx] is 
negative when 

a(l - b) 
x < = - R. 

b 
Hence 

/
-R 

{a(l - b) +bx)f(x)dx 
- 0 0 

ƒ 00 

[a{\ - b) + bx}f(x)dx 

= a(l - b) { - f ƒ(*)<** + f f(x)dx\ 

ƒ(*)<** + ô < - I xf(x)dx 

xf(x)dx > + b I xf{x)dx 

J R /»oo 

f(x)dx + 2b xf(x)dx 
-R J R 

r* oo 

< a( l - b)2ka(l - J)/ft + lb I tf/(tf)dtf, 

which is less than 

/
00 

I x | f(x)dx, 
- 0 0 

if 
/% 00 

2a2£(l - bY/b + 2br < 2 I xf(x)dx, 
or if 

2a2£(l - bY + 2b2r - 2br < 0, 
or if 

1 <b < 1. 

If the error law is the Gaussian law then the above result 
is identical to that obtained by Dodd who used altogether the 
Gaussian law. 
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THEOREM 5. Under the law f{x) = he~M/2, there exist values 
of the constant b such that the probable value of the absolute error 
of bm is less than the probable value of the absolute error of the 
measurement m. A sufficient condition for such a value is 

1 — ah 
1 <b < 1, 

a2h2 - ah + 1 
where a is positive. 

PROOF. By a similar process, 

J
» R /» oo 

e~hxdx + hb I xe"hxdx 
o JR 

= a(l - J)(l - e~hR) + bRe~hR + be~hR/h. 
Since 

ehR = (i + Aü + h*R*/2 H ), 

we have ehR>hR and e~hB < l/(hR). We have also 

/ h2R2 h*Rz \ 
1 - e-hR = I i « i + kR + • • ) 

\ 2! 3! / 
/ h2R2 hzRz \ 

= hR - ( + • • ) . 
V 2! 3! / 

The last parenthesis is positive, therefore 

1 _ e-hR <hR = a{\ - b)h/b. 
Therefore 

P(\x'\) ^ ha\\ - b)*/b + hR + b/h, 

which is less than P( \x |) = 1/h if 

AV - 2a2A2& + a2A262 + Afta(l - J) + b2 < b, 
or 

1 — ah 
1 < J < 1. 

a2h2 - ah+1 
The denominator is not zero unless ah, a, or h is imaginary. 

These cases are excluded here. If 1 >ah the fraction in the first 
inequality is positive. For other cases the inequalities have no 
meaning. Theorem 4 gives a lower limit for b regardless of the 
true value of a. 

If the error law is 
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2 A 
ƒ(*) «•(1 + h2x*y 

we have 
1 

1 < b < 1. 
2a2/*2 + 1 

Under the law 
(h h21 x I \ 

we have 
3 

1 < 4 < 1. 
a2A2 + 3 

Under a type of Bayes function 
3h(l - A2*2) 

ƒ(*) = 
4 

we have 
1 

1 < b < 1. 
4a«A* + 1 

If 
2A 

ƒ(*) = , 
r(«*» + «r*-) 

we have 
è ( - 1 ) - / ( 2 » + 1 ) 2 

1 ! — < b < l . 
*<»« + è ( - i ) " / ( 2 » + i ) ' 

0 

Under the error law 
hp 

ƒ(*) = rTT^"*"1*1*» 
2r(l/#) 

we have 
T(2/p) 

< b < 1. 
f AW + T(2//>) 

Under the law ƒ(*) = l/(2&), where k is a constant, we have 

1 < 6 < 1. 
2a2 + k2 
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5. Concerning the Absolute Value of the Error of the Mean. 
If the Gaussian law is the error law for the individual errors, 
then the law for the mean of n is also another Gaussian law. 
According to Theorem 4, we may write 

(5) 
1 

2h2a2\/n + 1 
< B < 1, 

where B is a constant which is multiplied by the mean M. This 
indicates that the mean deviation of the mean is larger than the 
mean deviation of B times the mean, provided the law of error 
is the Gaussian law. This indicates that there is a better value 
than the mean for the true value, if the law is the Gaussian law. 

The method of random sampling from a known parent popu­
lation may be employed to investigate the nature of B for other 
laws of error. Let the parent population consist of the variâtes 
%u #2, #3, • • • , x*> Let samples of r variâtes be taken from this 
parent. I t has been shown f that the mean of all possible sample 
means is equal to the mean of the parent population, if repeti­
tions of samples are not allowed. 

Let the first sample mean of r variâtes be 

Zi = 
Xi + X2 + X3 + I Xr 

then the deviation of the first sample mean from the mean of the 
sample means is, in absolute value, 

zA = 
Xi + X2 + X3 + ' • • + Xr 

- MA 

(xi- M x) + O 2 - M x) + (x3- Mx) + • • ' + (xr-Mx) 

\Xi + X2 + XZ + ' ' ' + Xr 

\ r 

| Xi | + | X2 | + | X3 1 + • • + \Xr 

where the mean of the parent population is Mx. 

t An editorial, Annals of Mathematical Statistics, vol. 1 (1930), pp. 101-
121. See also the first footnote on page 61. 
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The mean deviation of the sample means is found by finding 
the average of all possible \2\'& and this is clearly less than 
or equal to the mean deviation of the parent population. The 
mean deviation of the sample means is 

8Cr 

E|z«l 

»*-i 

while the mean deviation of B times the sample means is 

£s|Z«| B £ | Z , | 
where the summations are divided by 8Cr since there are that 
many possible samples that can be taken from the 5 variâtes. 
The mean deviation of B times the sample means is less than the 
mean deviation of the sample means if B is less than unity. If 
s goes to infinity the above is also true. 

The above inequalities for the Gaussian law give more in­
formation than the above sampling method. B is not only less 
than 1 but it lies in a certain interval with the end points de­
leted. This is found in (5). Going back to sampling, if the mean 
of the parent population is the true value then the mean devia­
tion of B times the sample means is less than the mean deviation 
of the mean of the sample means. 

To be able to find the inequalities for B when other laws of 
error are used it is necessary to find the law for the mean when 
the law for the individual error law is known. 

The limits for b are not always the best limits, for under 
Theorem 1 the lower limit for b is found by setting the first 
derivative of (2) equal to zero and solving for b. This gives the 
middle of the interval as the lower limit of b> which brings b 
nearer to unity. 

Intervals for the constant b can be found when the higher 
moments are used. 

In general the coefficients b and B are so near to unity that 
bm and BM do not differ appreciably from m and M respec­
tively, yet this is not always the case, notably, when the 
standard error of m is large relative to m. 

T H E UNIVERSITY OF MICHIGAN 


