
D I F F E R E N T I A L GEOMETRY IN T H E LARGE* 

BY D. J. STRUIK 

1. Introduction. As a typical example of a theorem in this 
type of differential geometry we take the so-called four-vertex 
theorem. I t states tha t every closed plane convex curve has at 
least four different points of extreme curvature. Thus the ellipse 
has exactly four such points. Since they are called vertices, we 
use that name for points of extreme curvature in general. 

Curvature is a property of differential geometry. Its exist­
ence is established by the application of differential calculus to 
geometry. In the four-vertex theorem a relation is found be­
tween the curvature of a general type of curve at points a t 
finite distance. I t is obvious tha t the differential calculus alone 
cannot lead to such theorems; we need the integral calculus. 
Therefore, we might call this type of geometry integral geome­
try. But it has already become customary to call it differential 
geometry in the large (Differentialgeometrie im Grossen). 

2. Proof of the Four-Vertex Theorem. We shall now give a 
proof of the four-vertex theorem, to show the nature of such 
demonstrations. We take a closed plane convex curve having 
two, and only two, tangents in every direction. We may use 
this property as a definition, and call such a curve an oval. If, 
however, we define a plane closed convex curve as a continuous 
closed curve with no more than two points in common with a 
straight line, we must investigate the relation between both 
definitions.f Still other ways can be found to define convexity. 

* An address presented at the invitation of the program committee at the 
meeting of the Society in New York City, April 18, 1930, as part of a sym­
posium on differential geometry. 

t See A. Emch, American Journal of Mathematics, vol. 35 (1913), p. 407; 
S. Nakajima, Tôhoku Mathematical Journal, vol. 29 (1928), p. 227. 
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Let r = r(s) be the vector equation of the oval, r having the 
components x and y, while s is the arc length measured from a 
point on the oval. If t and n are the unit vectors in the tangent 
and normal directions, uniquely defined by the assumption of a 
sense of direction on the oval and a sense of rotation in the 
plane, we have 

dr dt dn 

ds ds ds 

rk + n\ ; 

therefore, if the integral is taken around the curve 

frdk = 0. 

Now k(s) has certainly one maximum and one minimum, if 
the oval is not a circle. If we take the origin at one of the points 
where dk = 0, we see immediately from the figure that the as­
sumption that there is only one other point for which dk = 0 
leads to an absurdity. The ellipse has four vertices, therefore 
every oval has at least four vertices. 

Among the theorems closely connected with the four-vertex 
theorem we mention the following : 

On every oval there are at least three pairs of points with parallel 
tangents and equal curvatures * 

If an oval has n vertices, a circle has at most n points in common 
with the oval. 

In space we can define an ovaloid as a closed continuous sur­
face with two and no more than two tangent planes in every 
direction. A theorem analogous to the f our-vertex theorem has 
for several years been known as the conjecture of Carathéodory. 

* W. Blaschke, Archiv der Mathematik und Physik, vol. 26 (1917), p. 65. 
G. Szegö, ibid., vol. 28 (1920), p. 183. W. Süss, Jahresbericht der Vereinigung, 
vol. 33 (1924), Part 2, p. 32; Tôhoku Mathematical Journal, vol. 28 (1927), 
p. 216. T. Hayashi, Palermo Rendiconti, vol. 50 (1926), p. 96. 

where k = 1/p is the curvature. Then 

I rdk = rk \ — J kdr 

]«2 f**2 

— I ktds = 
»1 ^ « 1 
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I t is tha t on every ovaloid there are at least two umbilical 
points. The exact formulation and demonstration here is much 
more complicated than in the plane case, but it seems that the 
proof has recently been given by Cohn-Vossen, for any closed 
analytic surface tha t is uniquely representable on a sphere.* 

A generalization of the four-vertex theorem for curves in 
space is also known, f 

3. Affine Properties. The four-vertex theorems belong to the 
group of euclidean motions. This suggests the possibility of 
similar theorems for other groups, as the affine group, the 
Möbius group of conformai transformations, the group of analy­
sis situs. The conception of a closed convex curve is affine, but 
instead of osculating circles we have osculating conic sections. 
The minimum number of points with stationary osculating conic 
section (the so-called sextactic points) is six. J This is similar 
to the f our-vertex theorem. There is also a theorem suggested 
by the property that a straight line, tha t is, a curve of zero 
curvature, has no more than two points in common*with an 
oval. The curve of zero affine curvature is the parabola. The 
theorem states tha t if at all points of an oval the osculating 
conic section is an ellipse (so-called elliptic points), the oval has 
at most four points in common with a parabola. Another way 
to state it is that every five points on an elliptically curved oval 
lie on an ellipse. § The osculating ellipse of an elliptically curved 
oval with maximum area encloses the given oval; that with 
minimum area lies entirely within the oval.^f 

4. Projective Properties. To differential geometry in the large 
of the projective group there belong a series of investigations 
which were started by Kneser|| in 1888 and which were con-

* W. Blaschke, Mathematische Zeitschrift, vol. 24 (1926), p. 617; see also 
his Differ entialgeometrie, vol. 3, p. 289; W. Suss, Tôhoku Mathematical Jour­
nal, vol. 27 (1926), p. 306; St. Cohn-Vossen, Proceedings Bologna, 1928; see 
H. Hamburger, Sitzungsberichte Berliner Akademie, 1922, p. 258; Mathe­
matische Zeitschrift, vol. 19 (1924), p. 50. 

t W. Süss, Tôhoku Mathematical Journal, vol. 29 (1928), p. 359. 
% W. Blaschke, Leipziger Berichte, vol. 69 (1917), p. 321, and Differential-

geometrie, vol. 2, p. 43. The theorem is ascribed to G. Herglotz and J. Radon. 
§ P. Böhmer, Mathematische Annalen, vol. 60 (1905), p. 256. 
K S. Ogiwara, Tôhoku Science Reports, vol. 15 (1926), p. 503. 
|| A. Kneser, Mathematische Annalen, vol. 31 (1888), p. 507; vol. 34 (1889), 

p. 204. 
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tinued by Juel.* They deal with points of inflexion, osculation 
planes, and other projective invariants. One of Kneser's sim­
plest results is that a plane arc free from singularities that has 
no more than two points in common with a straight line, does 
not send more than two tangents through one point of the plane. 
Juel remarks that the classification of algebraic curves in curves 
of second, third, etc., degree allows a generalization; and he 
studies the properties of plane curves that have no more than 
three, or no more than four, points in common with a straight 
line, and analogous curves in space. Such curves, if they are 
composed of a finite number of convex arcs whose tangents 
turn continuously, are called elementary curves. The maximum 
number of points of intersection with a line is called their order. 
Among Juel's theorems we find, for example, the following: 

The number of points of inflexion of an elementary curve is 
even or odd, if the order of the curve is even or odd. 

An elementary curve of order f our consisting of only one branch 
and without double points and cusps has at least one double tangent. 

Through stereographic projection the osculation circles of 
a plane curve pass into the intersections of the sphere with the 
osculation planes of the image of the curve. In this way, pro­
jective properties may pass into metrical properties. Kneser 
found the four-vertex theorem in this manner. 

5. The Topological Group. Several types of differential ge­
ometry in the large are known tha t are invariant under topo­
logical transformations. One of the best known is the theorem 
on the curvatura intégra of a closed surface of connectivity p. 
It statesf tha t the integral of the Gaussian curvature taken over 
the entire surface depends only on p: fRd(T = 4:w(l—p). I t is 
one of the applications of Stokes* integral theorem, which, 
just as Gauss's analogous theorem, may be considered as a prop­
erty of differential geometry in the large. Extensions of this 

* C. Juel, Det danske Videnskabernes Selskabs Skrifter, 1906, p. 297; 
Jahresbericht der Vereinigung, vol. 16 (1907), p. 196; Mathematische Annalen, 
vol. 76 (1915), p. 343. At the meeting, the importance of Juel's results was 
pointed out by S. Lefschetz. See also H. Brunn, Jahresbericht der Vereini­
gung, vol. 3 (1892-93), p. 84. 

t See W. Blaschke, Differentialgeometrie, vol. 1, p. 111. 
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theorem to spaces of constant curvature and of higher dimen­
sions, are known.* 

Here belong also the theorems on the behavior in the large 
of geodesies on surfaces, the Jacobi condition, and Poincaré's 
theorem tha t there is a t least one closed geodesic on an ovaloid,f 
it being plausible tha t there are a t least three. On a closed 
surface of positive curvature a point describing a geodesic 
must cross any existing closed geodesic an infinite number of 
times, so tha t two closed geodesies necessarily intersect. $ The 
problem of closed geodesies is of importance in dynamics, 
where it leads to periodic motions. Birkhoff and Morse have 
developed methods under which this problem, and that of 
extremals in variational problems in general, can be studied in 
more dimensions and on manifolds of different connectivity. 

The Jacobi condition for geodesies on a surface, which asso­
ciates with a given point on a geodesic another point, called 
the conjugate point, gives rise to the theorem tha t the locus 
of the points conjugate to a point on an ovaloid has at least 
four cusps. On an ellipsoid there are exactly four cusps. I t is 
not yet satisfactorily proved. § 

In Riemannian manifolds of more than two dimensions 
hardly anything except local differential geometry has been 
studied. An exception might be made for a generalization of 
the theorem tha t only on surfaces of constant curvature curves 
of constant geodesic distance to a point (so-called distance 
circles) and curves of constant geodesic curvature (so-called 
curvature circles) are identical. Only in manifolds of constant 
curvature exist closed curvature spheres that can be contracted 
to a point without losing their property.|| 

* H.Hopf, Göttinger Nachrichten, 1925, p. 131; Mathematische Annalen, 
vol. 95 (1925), p. 340; these papers discuss the problem from the point of 
view of analysis situs. The subject was discussed from the point of view of 
differential geometry by D. J. Struik in a paper read to the Harvard col­
loquium in the Spring of 1930. 

t H. Poincaré, Transactions^ this Society, vol. 6 (1905), p. 237 ; see also W. 
Blaschke, Differentialgeometrie, vol. 1, p. 142. See A. Speiser, Vierteljahrs-
'schrift Naturforschenden Gesellschaft Zurich, vol. 66 (1921), p. 28. 

t Hadamard, Journal de Mathématiques, vol. 3 (1897), p. 331. See also 
M. Kerner, Mathematische Annalen, vol. 101 (1929), p. 633. 

§ Blaschke, Differentialgeometrie, vol. 1, p. 160, from Carathéodory. 
|| B. Baule, Mathematische Annalen, vol. 83 (1921), p. 286; vol. 84, p. 202. 
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6. Circles and Spheres. The properties of circles and spheres 
attracted the attention of the geometers perhaps since the 
time when the Neanderthal man looked up and saw the sky 
revolving above his head. Many attempts have been made to 
characterize these figures, either for purely scientific reasons, to 
find interesting properties, or in an at tempt to express their 
perfection. We give some of those properties here. 

(a) Of all closed plane rectifiable curves of given circumference 
the circle has maximum area. 

This property has been known from antiquity, and was per­
haps suggested by the experience of generals, who found that 
the number of troops necessary to surround a town was no 
measure for its extent. The proposition is known as the iso-
perimetric problem, and has been the starting point for the 
finding of many inequalities on closed curves.* 

(b) The circle can be turned around in a square and always 
remain tangent to the four sides. Curves that have this property 
are called curves of constant breadth. 

(c) A needle of length less than the diameter of the circle can 
turn through an angle of 360° without hitting the circumference. 
The problem to find such curves of minimum area is called 
Kakeya's problem, f 

(d) There exists a point inside the circle for which all chords 
passing through it are equal. The same point divides all such chords 
in two equal parts. This is called the center property. The 
first property exists for many more curves, for instance the 
limaçon. We call such a point a distance point. In the same 
way there exists an area point for closed surfaces. In this case, 
however, the sphere is uniquely determined by the property 
that there exists a point such tha t all plane sections passing 
through it are equal. The center property, however, is affine, 
and characterizes ellipses and ellipsoids. J 

(e) All geodesies on a sphere are closed. Some other surfaces of 
this kind are known,both surfaces of revolution,and also others. § 

* See W. Blaschke, Kreis und Kugel, 1916; and T. Bonnesen, Les Problèmes 
des Isopêrimètres et des Isêpiphanes, Paris, Gauthier-Villars, 1929. Both books-
contain bibliographies. 

t S. Kakeya, Tôhoku Science Reports, vol. 6 (1917-18), p. 71. 
t T. Kubota, Tôhoku Science Reports, vol. 3 (1913-14), p. 235. 
§ O. Zoll, Mathematische Annalen, vol. 57 (1903), pp. 108-133; G. Dar-

boux, Leçons sur la Théorie des Surfaces, vol. 3, p. 4. 
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(f) All geodesies on a sphere are plane. 
(g) The sphere is the only surface of constant non-zero Gaussian 

curvature which is without singular lines. This might be expressed 
by saying that a sphere cannot be deformed without singulari­
ties being formed.* For ovaloids an analogous property can be 
proved, that is, it can be shown that two continuously curved 
ovaloids, built up by analytical parts, are congruent or sym­
metrical, if they have the same line element. If, however, a 
small part of the surface of the ovaloid is taken away, of diameter 
less than any preassigned number, infinitesimal deformations 
are possible. An analytic surface of constant negative curvature 
without singularities is impossible.! 

An ovaloid is therefore uniquely determined (but for transla­
tions) if the Gaussian curvature is given as a function of the 
spherical image. J 

(h) All distance circles are curvature circles. See §6. 
(i) All geodesies starting from a point pass through another 

point. An unfinished at tempt to characterize the sphere by 
this property exists. § 

(j) All circumscribed cylinders are circular cylinders. This 
property is characteristic for a sphere. 1f Ovaloids of constant 
breadth show a generalization. 

(k) The sphere has constant mean curvature. Among all closed 
surfaces of unique spherical image, the sphere is characterized 
by this property. || 

7. Intensive Study of the Preceding Properties. We shall 
study more closely some of these properties. We define the 
distance of two parallel tangents to an oval as the breadth of 
this oval at the corresponding points. Then we have for curves 

* H. Liebmann, Münchener Berichte, 1919, p. 267. H. Weyl, Viertel-
jahrsschrift der Naturforschenden Gesellschaft TAX Zurich, p. 40. S. Cohn-
Vossen, Göttinger Nachrichten, 1927, p. 125. 

f D. Hubert, Transactions of this Society, vol. 2 (1900), pp. 87-99. For 
discussion and precision, see L. Bieberbach, Acta Mathematica, vol. 48, p. 319. 

% H. Minkowski, Gesammelte Abhandlungen, vol. 2 (1911), p. 125. 
§ E. B. Christoffel, Werke,vol. 1, p. 162. See S. Nakajima, Tôhoku Mathe­

matical Journal, vol. 28 (1927), p. 266; C. Carathéodory, Abhandlungen 
aus dem Mathematischen Seminar Hamburg, vol. 4(1926), p. 297. 

If W. Blaschke, Differentialgeometrie, vol. 1, p. 155. 
|| M. Fujiwara, Tôhoku Science Reports, vol. 3 (1913-14), p . 199. 
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of constant breadth d the following properties, several of which 
are due to Euler, who called these curves orbiform curves.* 

(a) The circumference C of such a curve = ird.'\ 
(b) The line connecting two corresponding points is perpendicu­

lar to the tangent and has therefore length d. 
(c) The sum of the curvatures at corresponding points is constant. 
(d) The evolute is a curve of zero breadth, that is, a curve of 

which one and only one tangent has a given direction. An exam­
ple is Steiner's hypocycloid.J And vice-versa, the involute of 
a curve of zero breadth is a curve of constant breadth. 

There exists a curious relation between the curves of constant 
breadth and Buffon's needle problem in probability theory. 
This was, in fact, the reason that Barbier became interested. 
A needle of length I is thrown upon a table where parallel lines 
are drawn at distance a >l. Then the probability that the needle 
will hit a line is 21/(ra). If we bend the needle into two parts 
making an arbitrary angle with each other the probability 
will not change. Reasoning in this way we can see tha t any 
needle bent into a closed convex curve of length L will have the 
chance L/(ira) to hit a line as long as the curve can hit at 
most one line. If, however, the curve hits only one line in one 
position, and two lines in another, we can obtain a curve of 
constant breadth with the same probability of hitting. For 
this we roll the curve along one of the lines and cut off the part 
of the curve outside of the envelope formed by the different 
positions of the other parallel line on the plane of the curve. § 

For surfaces of constant breadth, defined as ovaloids with 
their sets of parallel tangent planes at constant distance, we 
know, besides,1f tha t they are surfaces of constant perimeter, 

* Euler, Acta Academiae Petropolitanae pro 1778 (1781). See G. Loria, 
Spezielle ebene Kurven, vol. 1, 1910, p. 376, or Jordan-Fiedler, loc. cit. 

t E. Barbier, Journal de Mathématiques, (2), vol. 5 (I860), p. 273. Barbier 
mentions Puiseux as interested in these curves. Euler mentions properties 
(b) and (d). 

î See also W. Blaschke, Mathematische Annalen, vol. 76 (1915), p. 504. 
§ This reference to the needle problem was given, in the discussion, by 

O. Ore, who suggested, following Barbier, generalizations where the curve 
can roll not between two parallel lines but between more general curves. 

U H. Minkowski, Gesammelte Abhandlungen, vol. 2, p. 277. The inverse 
property is also true; see W. Blaschke and G. Hessenberg, Jahresbericht der 
Vereinigung, vol. 26 (1918), p. 215. 
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which means tha t the tangent cylinders have cross sections 
of constant area perpendicular to the generating lines. Such 
surfaces do not, as a rule, have an area = 7rd2, as the analogy 
with the plane might suggest. This was discovered by Barbier, 
who showed, besides, how we can obtain an infinite number of 
such surfaces. 

A generalization of curves of constant breadth can be ob­
tained by studying curves tha t can turn around in a given 
regular convex polygon, always remaining tangent to the sides. 
All such curves inscribed in a polygon of n sides have the same 
circumference, and at least 2(^ — 1) vertices.* For space curves 
of constant breadth see §9, 

Curves possessing a distance point were investigated in a 
study on the geometrical form of leaves, f They can be con­
sidered as conchoids with respect to themselves. For a similar 
reason curves of constant breadth are their own parallel curves. 

Among the chords of a closed curve in a certain direction, 
there are one or more of maximum length if the curve is an 
oval. At the end points of such extremal chords the tangents 
are parallel. Comparing all extremals in different directions, we 
have one or more of extremal length. For such a chord the tan­
gents a t the end are perpendicular. J 

Kakeya's problem has different answers for different cases. 
An oval satisfying its condition is the equilateral triangle. § 
If we ask for continuous curves only, a solution is Steiner's 
hypocycloid. But it can be shown tha t there are point sets 
of arbitrarily small Jordan measure, in which a line-segment of 
given length can turn through 360°. Here there is, of course, 
no longer continuity. If 

8. Inequalities. A great number of properties of ovals are 
inequalities. The starting point of the investigation was the 
isoperimetrical inequality between the circumference C and 

* M. Fujiwara, Tôhoku Science Reports, vol. 4 (1915), p. 44. 
t B. Habenicht, Die analytische Form der Blatter (Quedlinburg, 1905); 

Beitrdge zur Mathematischen Begrilndung einer Morphologie der Blatter (Berlin, 
1905); see G. Loria, loc. cit., p. 369. 

î Hayashi, Tôhoku Mathematical Journal, vol. 22 (1923), p. 387. 
§ J. Pâl, Mathematische Annalen, vol. 83 (1921), p. 311; compare W. B. 

Ford, this Bulletin, vol. 28 (1922), p. 45. 
If A. S. Besicovitch, Journal of the Mathematico-Physical Society of Perm, 

vol. 2 (1920); Mathematische Zeitschrift, vol. 27 (1928), p. 312. 
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the area A of a closed curve: 4wA ^ C2, where the sign = only 
holds for the circle. The analogous property for solid bodies is 
36wV2^Az

1 where F i s the volume, A the area, and the sign = 
only holds for the sphere.* 

Another simple inequality for ovals is irD ^ C, TTA ^ C. Here 
D is the maximum distance between two parallel tangents, 
sometimes called the diameter. The minimum distance A is 
sometimes called the thickness. The sign = holds for curves 
of constant breadth, f 

Another inequality, valid if the oval has a curvature defined 
at every point, is 

2TTR ^ C, 2irr ^ C, 

TTR2 ^ A, rr2 ^ A, 

where R and r are the maximum and minimum radii of cur­
vature, J and 

A ^ 2r, D S 2R, 4D2 ^ C2 - 4irA. § 

There are other inequalities,sharper than those just mentioned.^ 
In affine geometry there are inequalities expressing the iso-

perimetrical property of ellipse and ellipsoid. The principal 
ones are for ovals: 

STA ^ d 3 , 

where G is the affine length of the oval 

G = ƒ (rXryiHt) 
and for ovaloids : 

12TTF ^ Ax
2, 

where Ai is the affine area of the ovaloid 

* T. Bonnesen, Mathematische Annalen, vol. 95 (1926), p. 267. 
t A. Rosenthal and O. Szasz, Jahresbericht der Vereinigung, vol. 25 

(1910). W. Blaschke, Leipziger Berichte, vol. 67 (1915), pp. 290-298. 
t A. Hurwitz, Annales de l'École Normale, (3), vol. 19 (1902), pp. 357-408. 

W. Blaschke, Kreis und Kugel, 1916. 
§ T. Kubota, Tôhoku Science Reports, vol. 13 (1924-25), p. 14. 
1f T. Kubota, Tôhoku Science Reports, vol. 12 (1923-24), p. 45; S. Fuka-

sawa, Tôhoku Mathematical Journal, vol. 26 (1920), p. 27. 
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Ai = I I (| EG -F2 \)dudv, 

where ds-2 = Edu2 + 2 Fdudv + Gdv2.* 
The derivation of these inequalities can be closely connected 

with the conception of mixed area and mixed volume. Take, 
for instance, two ovaloids, Oi, 02, given by the vectors, n , r2. 
Then the vector r = Xri+/xr2, A^O, M = 0> determines a third 
ovaloid O12. Its volume V(\, ;u) can be expressed as a cubic 
form in X, fi} 

V{\ M) = ^ m X 3 + 3Kn2XV + 3F122XM
2 + T W 3 . 

Here Vm, V222 are the volumes of Oi,, 02, and the two quantities 
Vii2i 1̂22 are called the mixed volumes of Oi, 02. Then we have 

Vu22 ^ 7 inFi„ , 

^ 1 2 2 2 ^ ^ 1 1 2 ^ 2 2 2 ; 

and hence 

where the sign = only holds if Oi, 02 are similar and in similar 
position. If 02 is the unit sphere, the last equality gives the 
isoperimetrical property of the sphere, f 

9. Space Curves. Closed space curves have, thus far, not had 
the attention tha t we might expect. Still, some interesting 
properties have been detected, of which we shall mention a few. 

A space curve of constant breadth can be obtained by taking 
a closed curve whose normal plane at a point P has only one 
more point Q in common with the curve, and for which PQ is 
constant. For such curves PQ is also normal at Q; the chords 
PQ form a one-sided surface. Such a curve lies on a surface of 
constant breadth. { 

I t is also possible to define curves of constant breadth on 
the sphere, § or in conformai geometry sets of 00l circles in the 
plane having constant conformai breadth.If 

* See Blaschke, Differentialgeometrie, vol. 2; also R. Zindler, Wiener Be­
richte, vol. 130 (1929), p. 289. 

t See H. Minkowski, Gesammelte Abhundlungen, vol. 2, p. 250. 
t M. Fujiwara, Tôhoku Mathematical Journal, vol. 5 (1914), p. 731; 

vol. 8 (1915), p. 1; W. Blaschke, Leipziger Berichte, vol. 66 (1914), p. 171. 
§ W. Blaschke, Leipziger Berichte, vol. 67 (1917), p. 290. 
H T. Takasu, Tôhoku Science Reports, vol. 17 (1928), pp. 273, 345. 
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The spherical image of a closed space curve on the unit sphere 
is a closed spherical curve. I t is intersected by every great 
circle.* If it has a t most one double point, the torsion must 
change its sign, if it does not vanish identically.! 

The total curvature fkds of a closed space curve is ^2wi 

where the sign = holds only for plane convex curves. The 
quantity k is the (first) curvature of the curve. 

If k = constant, we call the curve a skew circle. If we con­
sider skew circles of k = 1 that are not closed, the angle a be­
tween an arc of length l^w and its chord is ^Z/2, the sign 
= only holding for an arc of the unit circle. J 

10. Other Theorems on Ovals. Some curious theorems on ovals 
deal with the so-called curvature centroid (Krümmungsschwer-
punkt) of plane curves. I t is the point in the plane defined by 
the radius vector frd<fi. As integrals along the curve 

J rrds 
rdP= 

o *̂ o P 

it can be defined as the center of gravity of the curve if it were 
loaded with a mass distribution proportional to the curvature. 
Then we have the following two theorems. 

The point with respect to which the pedal curve of an oval is a 
minimum is the curvature centroid.% 

If instead of looking for the center of gravity of the loaded 
curve we ask for the moments of inertia, we find a tensor Jtrdfy. 
The two principal axes, determined by this tensor, may be called 
curvature-axes.^ Some properties of ovals with respect to such 
axes have been found. 

Some other curious theorems on ovals are those dealing with 
inscribed or circumscribed figures. In an oval at least one 
square can be inscribed. At least two similar rectangles can 

* K. Löwner, in Polya-Szegö, Aufgaben unà Lehrsiïtze, vol. 2, 1925, pp. 165, 
391. 

t W. Fenschel, Mathematische Annalen, vol. 101 (1929), p. 239. 
t H. A. Schwarz, in Blaschke, DifferenUalgeometrie, vol. 1, p. 47. Here 

occur more theorems on these circles. 
§ J. Steiner, Gesammelte Werke, vol. 2, p. 99. 
If B. Su, Tôhoku Science Reports, vol. 17 (1928), p. 35, calls curvature 

axis the axis with respect to which the moment of inertia is a minimum. 



*931-] DIFFERENTIAL GEOMETRY 61 

be inscribed.* The same holds for circumscribed figures, f 
About an ovaloid a single infinity of cubes can be circumscribed, 
the points of contact forming continuous curves. In the case 
of an ellipsoid these cubes are congruent. $ A certain similarity 
to these theorems is shown by the following theorem, which 
holds for any closed rectifiable curve. 

There exists always at least one set of four points on the circum­
ference of a closed curve that lie on a circle and divide the circumfer­
ence in four equal parts. 

There are many generalizations of this theorem. For a space 
curve, for instance, we can prove tha t a similar property holds 
for four points in a plane. § Finally, if two congruent closed 
plane curves without multiple points coincide with each other, 
when they have three points in common, they must be circles. ^ 

11. History of the Subject. The history of this subject leads 
from Zenodor via some occasional work of Euler and Steiner 
to the end of the nineteenth century. The first important work 
on convex figures was by Brunn.|| Then came Minkowski's 
monumental work.** An interesting little book on plane convex 
curves was written by Jordan and Fiedler, f f Minkowski's work 
has been continued by Blaschke, who showed the beauty of 
differential geometry in the large in many papers and in three 
books.XX Under his influence not only many German authors 
wrote on such subjects, but also the present school of Japanese 
geometers. 

The importance of differential geometry in the large was 
first, so to speak, officially recognized in this country in an 

* A. Emch, American Journal of Mathematics, vol. 36 (1913), p. 407; 
this Bulletin, vol. 20 (1913), p. 27. 

f S. Kakeya, Tôhoku Mathematical Journal, vol. 9 (1916), p. 163. 
% T. Hayashi, Tôhoku Science Reports, vol. 3 (1913-14), p. 15. 
§ Communication to the author by A. Kawaguchi. 
U T. Kajima, Tôhoku Mathematical Journal, vol. 21 (1922), p. 15; T. 

Kubota, ibid., p. 21. 
|| Brunn, Dissertation, Mtinchen, 1887; Münchener Berichte, 1894, p. 102. 
** H. Minkowski, Gesammelte Abhandlungen, vol. 2, p. 131. 
ft Jordan-Fiedler, Contributions à l'Étude des Courbes Convexes Fermées, 

Paris, Hermann, 1912. 
t% W. Blaschke, Kreis und Kugel, 1916; Differ entiaXgeomelrie, vol. 1, and 

vol. 2. These books contain many references to the literature. 
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address by Kasner to this Society.* Later came two papers 
by Emch. A report on the subject has been published by 
Ball.f The most important contributions to this part of 
geometry have resulted, in this country, from the work of 
Birkhoff and Morse. Their starting point, however, is not the 
same as ours; it is the application of the calculus of variations 
to dynamics. 

12. Conclusion. The results so far obtained in differential 
geometry in the large are not very systematic. The demon­
strations often carry an ad hoc character. But they have a 
striking simplicity which is both charming and stimulating. 
Their way of discovery, their demonstrations, their general 
character belong to geometry in its most genuine form. It is 
certainly not true that the rococo time alone has had the privi­
lege of elegance in its mathematical discoveries. I t is not true 
either tha t the end of the romantic age of the Holy Alliance has 
witnessed the end of geometry in its best sense. The work of 
Minkowski, Blaschke and others is not the feeble work of epi­
gones. If we consider also the splendid development of local 
differential geometry since the discovery of pseudospherical 
displacement, it certainly seems as though we were not a 
hundred years from a heroic age of geometry,but rather just in 
the midst of another one. 
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* E. Kasner, this Bulletin, vol. 11 (1904-05), p. 283. 
t N. H. Ball, American Mathematical Monthly, vol. 27 (1930), p. 348. 


