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By Theorem 1 of M.H. §4, ¢: =y, and ¢2=ys. It follows, then,
from Theorem 14 of M.H. §1, that ¢y =¢..

THEOREM 4. If ¢1 and ¢, are two right angles in space, then
P1=0s.

Proor. If ¢; and ¢, are in the same plane, ¢1 =¢, by Theorem
1 of M.H. §4. If ¢; and ¢, are not in the same plane, they lie in
intersecting planes or in non-intersecting planes. If they lie
in intersecting planes, they are congruent to each other by
Theorem 3. If ¢; and ¢. lie in the planes «; and «s, respectively,
and a; does not intersect «,, there exists a plane a3 which inter-
sects both a; and «s. There exists in a3 a right angle ¢;. By
Theorem 3, ¢1=¢; and ¢y =0¢;; hence, by Theorem 14 of M. H
§1, we have ¢1=0¢,.
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CERTAIN QUINARY FORMS RELATED TO THE SUM
OF FIVE SQUARES*

BY B. W. JONEST

1. Introduction. The number of solutions in integers x, v, 2
of the equation n =x?4y%+432? is a function of the binary class
number of #. For numerous forms f=ax?+by*+c2?, the ex-
pression of the number of solutions of f=# in terms of the class
number is another way of showing that the number of repre-
sentations of # by f is a function of the number of representa-
tions of various multiples of # as the sum of three squares. {

Similarly, the number of solutions of the equation #=x2+4
y2+22412 in integers is the sum of the positive odd divisors of #,
multiplied by 8 or 24, according as # is odd or even. There are
various forms f=ax?+by2+cz2+ds? for which the number of
representations of # by f is a multiple of the sum of the odd
divisors of #. The number of representations of # by one of

* Presented to the Society, Aoril 5, 1930.

t National Research Fellow.

1 See, for example, Kronecker, Journal fiir Mathematik, vol. 57 (1860),
p. 253; J. V. Uspensky, American Journal of Mathematics, vol. 51 (1929),
p. 51; B. W. Jones, American Mathematical Monthly, vol. 36 (1929), p. 73.
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these forms is thus a simple function of the number of repre-
sentations of # as the sum of four squares.*

Following a suggestion of E. T. Bell, I have here considered
as the fundamental function, ¢ (%), the number of representa-
tions of # as the sum of five squares. With the exception of
three forms (fu, fi2, f13), the number of solutions of n=x2 +
aoxf tasxd +axd +asx?, where a;=1, 2 or 4, is shown to be
expressible in terms of ¢ and for a;=1, 2, 4, or 8 the number of
solutions of f=#u is expressed in terms of ¢ and two other
functions (¢ and B). Itshould be noted that for certain values of
n, May.(n) is expressible totally in terms of ¢. It is true in many
cases when # is even and in the following formulas when # is
odd: (37.2), (37.3), (38.1), (40.1), (40.2), (41.1), (44.1), (46.1),
(48.1), (48.2), (50.1), (52.1). See also the last section of the
paper giving a few miscellaneous results.

2. Notations. The letters n, m, x, y, u are used to denote
integers; m and u are odd and # and m are positive.

N[n=f] denotes the number of representations of # by the
form f=ux2 +asx? +asx? +awxld+asxs?, the coefficients to be
arranged in increasing order of magnitude.

fior f} is the form f when j of the coefficients are 2 or 4 res-
pectively and the rest of the coefficients are 1.

Ji; is the form f when ¢ of the coefficients are 2, j of them 4
and the remainder are 1.

Save is the form x? +ax? +bxf +cxd +8xs* where e, b and ¢
are powers of 2.

Min)=N[n=f;]; M!(n)=Nln=f!]; Mi(n)=N[n=f;l];
Mpe(n) =N[n =fabc].

We regard the following as fundamental functions:

Mo(n) =¢(n); a(m) = Mu(m); 8(m) = Msu(m), if m=1 (mod 8).

We also use the following for brevity’s sake: A(n) = M/ (n);
N (4n) = N[dn =f{ ; xixoxsxs odd |; o' (n) = N [n =1 with x; odd ]
and ¢'(m) =N[m =fo; x1%2%3%exs odd |, which has a value differ-
ent from 0 only when m =35 (mod 8).

3. A Fundamental Lemma.t N[2n=x2+y?]=N[n=x24+92].

* See, for example, J. Liouville, Journal de Mathématiques, (2), vol. 7
(1862); P. Pepin, Journal de Mathématiques, (4), vol. 6 (1890), p. 5.

t Since this lemma is very elementary, we shall use it freely without com-
ment.
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This follows from the fact that 2#=x2-+y? implies that the
pair of equations x+y=2X and x —y =27 is solvable for X and
Y and thereis a one to one correspondence between the solutions
of 2n=x%+y? and n=X2+ 12

COROLLARY 1.

N[2m = x? + 32| = 2N[m = 2 + 4y2].

COROLLARY 2.
N[2#n' = > + y2] = N[n = &2 + 92| = N[2n/ = 2% + 292].

4. Reduction Formulas for ¢(n). Since fo=n=0 (mod 4)
implies that just one or all of the x’s are even, we have
)] o(4n) — ¢(n) = SN'(4n).
Applying Corollary 1, we have

N(4n) = 4N[2n = u? + u? + 4o + 4w + 2452 |
= 8N[n = p? + 4x2 + 2a2 + 222 + a2 ].

Applying Corollary 2, we have
(1")YN'(4n) = 8N [n = p? + dx? + 2 + 92 + a2 ;. = y (mod 2)],
(2) N(4n) = 8N (n) if n = 0 (mod 4).

If »=2m note that fo=2m implies that exactly two x’s are
odd and we have from (1)

(3) N (8m) = 4¢(2m)/5.
If n=m consider first the case m=35 (mod 8). Then
¢ (m) = 4N [m = fags With a1255 odd ]
=8N [m = u? + 4p? + 82 + 1642 + 832 ].

Now f{ =m implies that one of x,, x3, %4, %5 is incongruent mod
2 to the other three, and thus

M{(m) = 4N[m = f{;x: # 23 = 4 = x5 (mod 2) ]

= AN [m = u? + 4us? 4 16w + 8x2 + 8x5; 4, = x5 (mod 2) |
+AN[m = p? + 16x2 + 4ud + 8x2 + 8x2; x4 5% x5 (mod 2)]

= 4N [m = u? + 4u? 4 87 + 1602 + 8x¢ ].

Thus M{ (m) =¢’(m)/2. This taken with the known equation
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SMJ(m)+¢'(m) =¢(m), found by noting that fo=m implies
that just one or all the «’s are odd, gives

“) ¢'(m)2¢(m)/7 if m =5 (mod 8),
and
(5) M{(m) = ¢(m)/7 if m =35 (mod38).

Now from (1), we have N (dm) =8M{ (m) if m=5(mod 8).
Since fo=m implies that just three of the x’s are odd, or just

one is odd according as m=3 (mod 4) or =1 (mod 8), we have,
from (1’) and (5),

(6) N (4m) = 8agp(m),

where ¢ =1/10, 1/5, or 1/7, according as
m = 3 (mod 4), = 1 (mod 8), or = 5 (mod 8).
If ' #£0 (mod 4), we have, using (1) and (2),

o(4on’) — ¢(427'n) = 5.8\ (4n'), (a 2
o(4=7n') — ¢p(427n') = 582N (4n), (a 2 2),
o(4n’) — ¢(n') = SN'(4n").
Adding, we get

a

(N p(4en’) — ¢(n') =5

N(4n'),

where =1 and 73#0 (mod 4). Then, using (3) and (6), we
have the reduction formulas

(8.1) (22t m) = (2842 + 3)¢(2m) /1,
fora=1,
(8.2) o(4om) = Ap(m)/7,

where =1 and 4 =23«+243 8eti—1, (5-82+249)/7 according
as m=3 (mod 4), =1 (mod 8), or =5 (mod 8).

5. Relationship between N(n) and ¢(n). It is obvious that
N (4n) =\(4n) —¢(n). Thus, from (1), we have ¢p(4n) +4¢(n) =
S5A(4n). This from (8) gives the formulas below for A(4%#). We
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find N(m) by noting that fo=m implies that just three of the
x’s are odd or just one is odd according as m=3 (mod 4) or
m=1 (mod 8) and that A(m) =4M,'(m) if m=5 (mod 8). To
obtain A(2m) note that fo=2m implies just two x’s are odd.

9.1) A(4etim) = Bo(m),

where a=0 and B=3(2%++¢4+5)/35, (3-23++5—5)/35, or
3(23«+543) /49, according as m=3 (mod 4), =1 (mod 8), or
=5 (mod 8);

9.2) N42-2m) = 3(2%+1 + 5)¢(2m) /35,
where = 0;
9.3) N(m) = 4ad(m),

where ¢ is defined in (6).
6. Forms f, where M(n) is Expressible Totally in Terms of ¢.*

CasE I: n=m. Note that N\(2m) =6N[f! =2m; x,x; odd and
both x5 and x4 even | =12a’(m). Thus

(10) o (m) = $(2m)/20.

Now fi =m implies that one of x1, x2, x3, x4 is incongruent to the
other three modulo 2, that is,

Mi(m) = 4N[m = f1; 21 # %2 = 43 = x4 (mod 2) | = 4a/(m)
and

(11) Mi(m) = ¢(2m)/5.

The equation f/ =m implies that just three of x1, xs, x3, x4 are
odd, or just one is odd, according as m=3 or 1 (mod 4). Thus,
using (9.3),

(12) M{ (m) = bop(m), where b = 1/10, 3/5, 3/17,

according as m=3 (mod 4), =1 (mod 8), or =5 (mod 8).
We note that

My(m) = N[m = fo; %1 0dd, xs = %3, 4 = x5 (mod 2)].
It is therefore true that My(m)=2MJ(m), M4 (m)/3 or

* For complete results see case II below.
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M{ (m)/3+@¢'(m), according as m=3 (mod 4), =1 (mod 8),
or =5 (mod 8). Thus, from (12) and (4),

(13) My(m) = cp(m),
where ¢=3/7 or 1/5 according as m=5 (mod 8) or #£5 (mod 8).
Also m=fy implies that all of x1, xs, x3 are odd, or just one

is odd according as m =3 or 1 (mod 4) and thus Mss(m) = M4 (m)
or M4 (m)/3 respectively. We have

(14) Mos(m) = ad(m),
where ¢ is defined in (6). Since fo=m implies that just one of
X1, X2, ¥3 is odd, or all are odd, we see that
Ma(m) = N'(m) + 3Mae(m),
where N’ (m) = N [m =fz; %1%5%5 odd]. Now
N'(m) = M3 (m), 0, or ¢'(m),

according as m=3 (mod 4), =1, or 5 (mod 8). Using (12), (14)
and (4), we have

(15) Mo(m) = de(m),
where d=2/5, 3/5, or 5/7, according as m=3(mod 4), =1
(mod 8), or =5 (mod 8).
The following results are obvious:
(16) My(m) = o/ (m) = ¢(2m)/20;
(17) My(m) = 2M5(m) = ¢(2m)/10;
(18.1) M{(m) = 2MJ(m)/3 = 2¢(m)/5 or 2¢(m)/1,
according as m=1 or 5 (mod 8);
(18.2) M{(4n + 3) = 0;
(19) M{(m) = $M{(m) = ep(m),
where ¢=0, 1/5, or 1/7 according as m=3 (mod 4), =1 (mod 8),
or =35 (mod 8);
(20) Ma(m) = 2M25(m) = 2a¢(m),
where ¢ is defined in (6).

Case I1: n even. We express N[n=f] in terms of X and ¢
from which, by reference to formulas (9) and (8), N[#=f] may
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be expressed in terms of ¢ alone. Since fi’ =4# implies x;=x,=
x3=x4 (mod 2),

(21) M,(2n) = N(4n), (for M1(m) see (11)),
(22) M;3(2n) = ¢(n), (for M 3(m) see (17)).
Since

¢(2n) = N[4n = f3; 1 = x (mod 2) | = M,(2n) + 2N'(2n),
where N'(2n) = N[2n=f!; x1 odd ], we see that
N'(2m) = 3N[2m = fi] = 6Mz(m),

and that
N'(4n) = N'(4n).

Using (16) and (1), we then have
(23.1) My(2m) = 2¢(2m)/5, (for Mz(m) see (15)),
(23.2) M,(4n) = ¢(4n) — 2N (4n) = {3¢(4n) + 26(n)} /5.
Obviously,
(24) M2n) = Mi(n) = ¢(2n)/5 or N(2n),

according as # is odd or even. (For M, (m) see (13).)
Now M{ (2m)=3N|[2m=f{|=6Msz(m). Thus, using (16),
we get

(25.1) My (2m) = 3¢(2m)/10.
For M4 (m), see (12).
(25.2) M) (4n) = ¢(n).
Also M{ (2n) = M3(n), using (17),
(26) My’ (2n) = ¢(2n)/10 or ¢(n/2),

according as # is odd or even. (For My (m), see (18).)
The following results are obvious:

(27) M{(2n) = 0 or ¢(n/2),
according as % is odd or even. (For M{ (m) see (19).)
(28) Moi(2n) = Mi(n) = ¢(2n)/5 or M(2n),

according as 7 is odd or even. (For M,:i(m), see (20).)
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(29) M(2n) = Ms(n) = ¢(2n)/10 or ¢(n/2),
according as % is odd or even. (For M.(m), see (14).)
(30.1) M3 (2m) = Mz(m) = dé(m),

where d is defined in (15).

(30.2)  Mu(4n) = 26(2n)/5 or {3p(2n) + 26(n/2)}/5,
according as 7 is odd or even. (For M3(m), see (16).)

7. A Reduction Formula for a’(n). A reduction formula for
o' (n) will later be found nceessary. We see that

a’(2m) = 2N[2m = ,U12 + ,u.22 + 89632 + 43042 + 43052] = 4M22(m)
and
o (4n) = 2N[2n = p? + p + 2ud + 4ad + 4ai? ]
= 4N[21’b = f21; X1%9 Odd] = 86!/ (1’1«).

Thus, using (10), we have
(31.1) o/ (4°m) = 82¢(2m)/20, ¢ = 0,
(31.2) o' (42-2m) = 4-8a¢p(m),
where a is defined in (6) and o= 0.

8. M1, M3, M12 Expressed in Terms of o and p.* Itisclear
that My1(2n) = 6N’ (n)+ Ms(n) where N'(n) = N|[n=Ffs1; %1 odd ]
= Ms2(n) or 2a’(n/2) according as # is odd or even, and

(32.1) M(m) = a(m), by definition,

(32.2)  Mu(2m) = go(m), where g =4/5,7/5, or9/7,
according as m =3 (mod 4), =1 (mod 8), or =5 (mod 8);
(32.3) Mu(4n) = 12a/(n) + My(2n).

Now

a(m) = N[m = f11; %3 = %3 (mod 2)]
+ 2N [m = fiz; x, = 1 (mod 2)] = o' (m) + 2M13(m),

* In many cases, to save space, results are expressed in terms of M;; M{,
Mz, My, Mg, o’ which have been previously expressed in terms of ¢.
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(33.1) Mu(m) = 3{a(m) — o (m)} = am)/2 — ¢(2m)/40,
(33.2) M3(2n) = My(n),
(34.1) Mis(m) = 2M3(m) = a(m) — $(2m)/20,
(34.2) Mi1s(20) = Ms(n).
9. M,v, Expressed in Terms of a, B’ and ¢.*
If n=m=1 (mod 4),
Mis(m) = Mysa(m) = Miz2(m)/2.
If n=m=3 (mod 4),
Mi(m) = 4N [m = fi1; ®12205 odd | + 4M 13(m)
= 8N [m = fosq; %1565 0dd] + 4M 15(m)
= 8Mus(m) + AM13(m) = 2M192(m) + 4My3(m).
(35.1) Mise(m) = a(m) — ¢(2m)/20 if m = 1 (mod 4),
(35.2) Miss(m) = 36(2m)/20 — a(m) if m = 3 (mod 4),
(35.3) Mi2:(2m) = N(m).
Noting that Mi11(m) =4 Mazs(m) =2 M192(m), we find

(36.1) Miu(m) = 2a(m) — ¢(2m)/10,
if m=1 (mod 4);

(36.2) Min(m) = 3¢0(2m)/10 — 2a(m),
if m=3 (mod 4);

(36.3) Miu(2m) = 6May(m) = 12ag(m),
where ¢ is defined in (6);

(36.4) Mi(4n) = N(2n).

If m=35 (mod 8),
Mus(m) = N[m = f//; 2 = a5 (mod 2)]
and
AN[m = f; xy # x5 = x4 = x5 (mod 2)]
= 4N[m = a2 + 4p2 + 1602 + dud + 4x2 ]| = 2Mouu(m).

* See note on §8.
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Then

(37.1) Masu(m) = B(m),

if m=1 (mod 8) by definition;

(37.2) Masu(m) = M4 (m)/2 = ¢(m)/14.
if m=5 (mod 8);

(37.3) Mzus(m) = M(m)/2 = ¢(m)/20
if m=3 (mod 4);

(37.4) M2uu(2n) = Ms(n).

Itis clear that
an(m) = 3M244(m) + N’(m),

where N'(m) = N [m =f112; %12255 odd].
Now

N’(m) = 2N[ = u? + 2#22 + 8x 4 2x2 + 8x52] = Mzz(m),
¢’'(m)/2, or 0, according as m=3, 5,0or +1 (mod 8). Moreover,
Mi15(2n) = Mgy(n) + 3N[2n = fio4; 105 0dd | = M3i(n) + 6N (%)

where N (n) = N[n=f1s; x1 odd]. Now N"'(n) = Ms(n) if nis
odd, 2Ms2(n/2) if n=2 (m.od 4), or 4a’(n/4) if n=0 (mod 4).

(38.1) Muw(m) = 38(m), S¢(m)/14, ¢(m)/4, or 3¢(m)/20,
according asm=1, 5, 3, or 7 (mod 8);

(38.2) Mi112(2m) = 3a(m) — ¢(2m)/10;
(38.3) Myy0(4m) = (d + 12a)¢(m),

where d and a are defined in (15) and (6), respectively;

(38.4) M112(8n) = M31(4n) + 240’ (n);

(39.1) Myu(m) = 3M111(m)/4 = 3a(m)/2 — 36(2m)/40 if
m =1 (mod 4);

(39.2) Muu(m) = Miu(m)/4 = 3¢(2m)/40 — a(m)/2 if
m = 3 (mod 4);

(39.3) M114(2m) = 3Ma(m) = 6agp(m),



1930.] CERTAIN QUINARY FORMS 731

where ¢ is defined in (6);
(39.4) Mi14(4n) = Mi(n).

Noting that My1s(m) =2N[m =fsss; x5 odd | +3Msss(m), we
have

(40.1) Myis(m) = 2Mous(m) = ¢(m)/10,
if m=3 (mod 8);
(40.2) Mi1s(m) = 3Masu(m) = 38(m) or 3¢(m)/14,
according asm=1 or 5 (mod 8);
(40.3) Mys(m) = 0if m = 7 (mod 8);
(40.4) M11s(2m) = 3M9(m) = 3a(m) — 3¢(2m)/20;
(40.5) Mys(4n) = Ma(n).

Noting that M1 (m) =2Mauy (m), we have,
(41.1) Mi24(m) = 28(m), ¢(m)/7, or ¢(m)/10,
according as m=1 (mod 8), = 5 (mod 8), or = 3 (mod 4);
(41.2) M124(2m) = a(m);
(41.3) M124(4m) = go(m),
where g is defined in (32.2);
(41.4) M124(8n) = 12d/(n) + M 4(2n).

Now Mias(m) = Mis2(m)/2 if m=3(mod 4). But if m=1
(mod 4),

Mi(m) = N[m = fi; just three of a1, a3, a3, €4 0dd]
+ N[m = fi; just one of a1, a3, x5, x4 odd ]
= SN[WL = f224; X1X2X3 Odd] + 4M13(m)
Also

Mios(m) = Miss(m) + 2N[m = fass; %1093 odd].
Therefore

Ml(m) —_ 4M122(m) = 4M13(m) - 4M123(m);
and

(42.1)  Mizs(m) = 3¢(2m)/40 — a(m)/2,
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if m=3 (mod 4);
(42.2) Miss(m) = 3a(m)/2 — $(2m)/8,
if m=1 (mod 4);
(42.3) M125(2m) = M4 (n).
Since Mis(m) = Ms(m), if m=1 (mod 4), we have
(43.1) Miu(m) = a(m) — ¢(2m)/20 or 0,
according as m=1 or 3 (mod 4);
(43.2) M144(2n) = Myi(n);
(44.1) Myss(m) = 2Ma44(m) = 2(m) or ¢(m)/7,
according as m=1 or 5 (mod 8);
(44.2) Mi(m) = 0if m = 3 (mod 4);
(44.3) M1s(2m) = M1s(m) = a(m) — ¢(2m)/20;
(44.4) Miis(4n) = My(n);
(45.1) Miss(m) = Mias(m) = 3a(m)/2 — ¢(2m)/8,
if m=1 (mod 4);
(45.2) Migs(m) = 0if m = 3 (mod 4);
(45.3) Miss(2n) = M4 (n);
(46.1)  Maso(m) = Mi1a(m)/3, 3Mo(m) /4, My(m)/2, or My(m)/4,
that is, B(m), 3¢(m)/20, 3¢(m)/14 or ¢(m)/20, according as m = 1,
3,5, or 7 (mod 8);
(46.2) M22(2m) = a(m);
(46.3) Mass(4m) = go(m),
where g is defined in (32.2);
(46.4) My20(8m) = 120/ (n) + M 4(27) ;
(47.1)  Masu(m) = M1sa(m)/2 = a(m)/2 — $(2m)/40,
if m=1 (mod 4);
(47.2)  Myzy(m) = 3¢(2m)/40 — a(m)/2,
if m=3 (mod 4);
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(473) M224(2n) = Mgl(%).

Since Maos(m) = Maas(m) or 2Mau(m), according as m=1
(mod 4) or 3 (mod 8),

(48.1)  Maas(m) = B(m) or $(m)/14,

according as m=1 or 5 (mod 8);

(48.2) Ma9s(m) = ¢(m)/10 or 0,

according as m=3 or 7 (mod 8);

(48.3) M3s(2m) = My3(m) = a(m) — ¢(2m)/20;
(48.4) Mjs(4n) = Mo(m);

(49.1) Mas(m) = Mi9s(m)/2 = 3a(m)/4 — ¢(2m)/16,
if m=1 (mod 4);

(49.2) M uus(m) = 3¢(2m)/80 — a(m)/4,

if m=3 (mod 4);

(49.3) M2s(2n) = Myy(n).

Since M2ss(m) = Mazs(m)/3 or Mas(m), according as m=3
or 1 (mod 8);

(50.1)  Mass(m) = B(m), $(m)/20, 0, or 0,
according as m=1, 3, 5, or 7 (mod 8);
(50.2) Mass(2m) = Mi3(m) = a(m)/2 — ¢(2m)/40;
(50.3) Mass(4n) = My(n);
(51.1) Muu(m) = Mis(m) = a(m)/2 — $(2m)/40
if m=1 (mod 4);
(51.2) Musn) =0if n =2 or 3 (mod 4);
(51.3) Mauu(dn) = Mi(n).

Since Mss(m) = M14s(m)/2 if m=1 (mod 4), we have
(52.1) Muss(m) = B(m) or ¢(m)/14,
according as m=1 or 5 (mod 8);

(52.2) Mus(n) = 0if o = 2 or 3 (mod 4);
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(52.3) Mus(4n) = Mqy(n);
(53.1) Muss(m) = Mass(m) = 3a(m)/4 — 6(2m)/16,
if m=1 (mod 4);
(53.2) Mys(n) = 0if n = 2 or 3 (mod 4);
(53.3) Mygs(4n) = Ms(n);
(54.1) Mags(m) = Mags(m) = B(m),
if m=1 (mod 8);
(54.2)  Msss(n) = 0,
if =2 or 3 (mod 4) or 5 (mod 8);
(54.3) Msss(4n) = My(n).
10. Some Miscellaneous Results. Letting f .. denote the form
x&+axd +bxd +cxd +16x:2
and
M wo(n) = N[f' ws=mn],
we have
(55)  Mu(8n +7) = M{(8n+ 7)/2 = ¢(8n + 7)/20;
(56.1) Minu(8n + 7) = 4M3u(8n + 7) = ¢(8n + 7)/5;
(56.2) Mii(4m) = 8Mss(m) + N(m) = 12ad(m),
where a is defined in (6);
(56.3) 111(8n) = N(2n);
(57.1) Mous(8n 4+ 7) = Mou(8n + 7)/2 = ¢(8n + 7)/40;
(57.2) M3us(8n 4 5) = Maus(8n + 5)/2 = ¢(8n + 5)/28;
(58)  Miss(8n + 5) = Myus(8n + 5) = ¢(8n 4 5)/28.
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