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The conditions of the theorem are necessary by the results of 
§3 and the corollary of §8. We may show that the conditions 
are sufficient by an argument following closely that used in 
proving the sufficiency of the condition in §6. 

The first example of §7 shows that the conditions of the 
theorem are not sufficient if we do not specify that M is locally 
connected. 
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1. Introduction. Identities of the type 

m n 

(1) X^as sin asx = ^2(3tsinbtX, 

where as, as, fit, bt are rational integers, arise in the comparison 
of like powers of the modulus when an elliptic function is repre­
sented in more than one way by trigonometric series. The fol­
lowing theorem is used in obtaining arithmetical results from 
such identities. 

THEOREM 1. If g(x) is an arbitrary, single-valued, oddfunctiont 

defined for x — as, 5 = 1, 2, • • • , m, and x = bt, t = \, 2, • • • , n, 
then (1) implies 

(2) Z«.g(a.) = ÈM&i). 
8=1 t=l 

Similarly, for cosines, we have the following statement. 

THEOREM 2. If f{x) is an arbitrary, single-valued, even func­
tion, defined f or x = as, s = 1, 2, • • • , m, and x = bt, t=l, 2, • • • , 
n, then 

m n 

(3) ^2as cos aax = ]>j8$ cos b^x 
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implies 
m n 

(4) 2></(«.) = Tfltfih). 
s = l t=l 

The method of proof for these theorems suggested by 
Liouville* assumes that the functions may be represented by 
a Fourier series. Nazimoff f also makes use of the Fourier series 
property. The method is perfectly general since the functions 
f(x) and g(x) are defined for only a finite number of values of the 
argument and hence by interpolation we may represent them 
by a Fourier series. It is desirable, however, to give a purely 
algebraic proof of the replacement principle. E. T. Bell, J 
in his fundamental paper on arithmetical paraphrases, avoids 
the Fourier series by making use of the lemmas which follow. 

LEMMA 1. If the as are rational integers =0 and the bt rational 
integers <0, and if f or all integral values > 0 of k 

m n 

s = l *=1 

then (i) m^n and precisely (m — n) of the as = 0; (ii) if, without 
loss of generality, the n non-zero as are ai, a<i, • • • , an, then the 
#i2, a2

2, • • • , an
2 are a permutation of the bi2, fr2

2, • • • , bn
2. 

LEMMA 2. If the as, bt are integers > 0 , and if there is an 
infinity of odd integers k>0, for which 

m n 

then m — n, and the as are a permutation of thebt. 

Bell (loc. cit.) has given a simple algebraic proof of Lemma 
1. Lemma 2, however, has not been proved by purely algebraic 
means. The proofs given by E. Swift§ and C. F. Gummer|| 
depend on continuity considerations. In the following paper 

* Note de M. Liouville, Journal de Mathématiques, vol. 7 (1862), p. 48. 
f Nazimoff, Annales Scientifiques de l'École Normale, vol. 3 (1868), 

p. 149. 
% Bell, Transactions of this Society, vol. 22 (1921), p. 17. 
§ E. Swift, American Mathematical Monthly, vol. 24 (1917), p. 288. 
Il C. F . Gummer. Transactions of this Society, vol. 23 (1922), p. 280. 
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the author presents a direct algebraic proof of Theorems 1 and 
2 based on the irreducibility of the cyclotomic equation. 

2. Cyclotomic Fields, Consider the cyclotomic field K of 
degree p — 1 defined by a root of the equation 

(5) 0(a) = XP-I + x
p~2 + • • • + x + 1 = 0, 

where p is an odd prime. From the irreducibility of <j>(x) the 
following theorem is obvious. 

THEOREM 3. The algebraic integers 

p - 1 
(6) e2kriipf k = ± I, + 2, • • -, ± ; 

are linearly independent for rational coefficients. 

We shall now consider Theorem 1. Let us choose an odd 
prime p such that 

p - 1 
(7) > max (m, n, \ as |, | bt | ) . 

Substituting x = 2w/p in (1) and replacing the sines by expo­
nentials we obtain 

(8) ^{ase
2irasi,p — ase-27ra*ilp — pte

2Tb*ilp + pte-2irbtilp} = 0. 
s,t 

From (7), the terms in (8) are either zero or belong to the set 
(6). Hence the coefficient of e2irkilp, i fe=±l, ± 2 , • • • , ± 
(p —1)/2 in (8) must vanish. Let us consider the three cases: 
(i) the as and bt all different from zero and of like sign; 
(ii) some as or bt equal to zero and the remainder of like sign; 
(iii) the general case. 

In case (i) it is seen that the coefficient of sin 
± 2 , • • • , ±(p-l)/2, in (1) is precisely that of e2irkilp in (8) and 
hence must vanish. The following generalization of Theorem 
1 follows immediately. 

THEOREM 4. If as and bt satisfy (i) and F(x) is an arbitrary 
function defined f or x = as and x = btj then (1) implies 

Jt«sF(as) = itptHbt). 
8 = 1 * = 1 
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We now turn to case (ii). Let F0(x) be any function for which 
F0(0) = 0. We substitute Fo(as) and FQ(bt) respectively in place 
of sin (asx) and sin (btx) in (1). If k^O, the coefficient of F0(k) 
will be precisely that of e2irkilp in (8) and hence vanishes. If 
& = 0, by definition F0(k) = 0, and hence we have the following 
theorem. 

THEOREM 5. If a8, bt satisfy (ii) and F0(x) is an arbitrary 
function defined for x = as and x = bt and vanishing for x — 0, then 
(1) implies 

m n 

s=l t=l 

Let us consider the general case (iii) and let g(x) be an ar­
bitrary odd function. If as is positive we replace sin (asx) in 
(1) by g(as), if negative by — g( — as). Similarly for bt. The 
resulting coefficient of g(k), k = l, 2, • • • , (p — l ) /2 , is seen to 
be precisely that of e2irki,p in (8) and hence is zero. Sincex = 0 
implies g(x)=0 and g(x) = — g( — x), Theorem 1 follows. 

Let us consider Theorem 2. We again choose p in accor­
dance with (7). Substituting x = 2ir/p in (3) and expressing in 
terms of exponentials we obtain 

(9) YJ{ase
2wasi/p + ase~2irasilp — j3te

2lrbii/p — fite~2lrhtilp) = 0 . 
s ,t 

The reasoning used for Theorem 1 must be modified slightly on 
account of the rational terms which may enter for vanishing 
as or bt. Since (6) are the roots of (5) we have 

fc=±l,±2,--- ,±(p-D/2 

Furthermore, from Theorem 3, this representation of —1 as 
a rational linear combination of (6) is unique. Hence we have 
the following theorem. 

THEOREM 6. If ck and R are rational, then 

]T cke
2wkilp = R 

fc=±l,±2,...,±(p-l)/2 

implies ck=-R, jfe=±l, ±2, • • • , ±(p-l)/2. 

It follows from this theorem and (7) that the coefficients of 
e2irkiiv j n (o) a n c [ a j s o thç rational term must vanish. Let us now 
consider two cases: (i) as and bt all of like sign or zero; and 



*93°-] TRIGONOMETRIC IDENTITIES 671 

(ii) the general case. In case (i) let F(x) be an arbitrary func­
tion defined for x = as and x = bt. We substitute F(a8) and F{bt) 
for cos (asx) and cos(btx) respectively. The coefficient of Fil), 
1 = 0, 1, 2, • • • , (p-l)/2, will be precisely that of e2*li/p in (9) 
and hence vanishes. Hence we have the following theorem: 

THEOREM 7. If the as, bt in (3) satisfy (i) and F{x) is an 
arbitrary function defined for x = as and x = bt, then (3) implies 

m n 

T,*sF(as) = 5JS«F(J (). 
S = l t=l 

For the general case (ii), let ƒ(x) be an arbitrary even func­
tion. If as is positive, substitute ƒ(as) in place of cos(asx) in (3), 
if negative, substitute ƒ( — a8). Similarly for bt. Then, as 
above, the coefficient of ƒ(/), 7 = 0, 1,2, • • • , (p- l ) /2 , will be 
precisely that of e2irli,p in (9) and hence vanishes. Theorem 2 
follows immediately. 

3. Removal of Conditions. The condition that as, as, ]8*, 6* 
be rational integers may be easily lessened. If as and bt are of 
the form ASN and J3*iV respectively, where As and J3* are 
rational and N is any real number, the transformation x = MNy, 
where M is a common multiple of the denominators of A8 and 
Bt, reduces the problem to the cases already considered. The 
theorems may also be generalized to algebraic as and j3t. We 
may suppose them algebraic integers since denominators may 
be eliminated by cross-multiplication and we may suppose that 
they all belong to an algebraic field K\ of degree r. We shall 
show that p may be chosen so that (5) is irreducible in K\. 

By writing 

4>(x) = I I O - e2rkilp) 
fc=±l,±2,---,±(p-l)/2 

it is seen that <j>{x) may be reducible only in those fields which 
are subfields of K. We first place on p the condition 

(10) (Lll,r) , , 

which insures that r and p—\ have a t most the common divisor 
2, that is,i£and K\ have at most a quadratic subfield in common. 
But the field K\ contains only a finite number of distinct 
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quadratic subfields. Suppose that these fields are generated by 
ci1/2, £21/2, • • • , e,}12. Since the only quadratic field in which 
0(x) is reducible is that generated by 

[ ( - l ) ( P - l > / 2 . £ ] l / 2 f 

if we impose on p the further condition 

(11) (p, ci, c2, • • • , c») = 1, 

it follows that K and K\ will have no common subfield and hence 
<t>(x) will be irreducible in K\. Hence a linear combination of 
(6) with coefficients in K\ is zero if, and only if, each coefficient 
is zero. Theorems 1, 4, and 5 generalize directly. Theorem 6 
takes the following form. 

THEOREM S.Ifp satisfies (10) and (11), the relation 

k 

where 6k and p belong to K\, implies d/c— —p, &= ± 1, ± 2 , • • • , 
±(p-l)/2. 

Theorems 1 and 7 generalize immediately. 
To extend the theorems to arbitrary complex a8, j8« let us 

suppose that some of them are not algebraic. We may then 
replace the a8, fit by linear combinations of a set 1, 7Ti, 7T2, • • • , 
TV with algebraic coefficients, where 1, 7Ti, 7T2, • • • , irv are 
linearly independent for algebraic coefficients. Hence, for 
similar choice of p, (8) and (9) imply v-\-l equations of the same 
type with algebraic coefficients and the theorems follow. The 
results are combined in the following theorem. 

THEOREM 9. The theorems of this paper are valid for arbitrary 
complex a8, fit and for as, bt of the form AsN,Bt N respectively, 
where Asy Bt are rational and N is an arbitrary complex number. 
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