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ON A COMPLETE CHARACTERIZATION OF T H E SET 
OF POINTS OF UNBOUNDED GRADE OF AN 

ARBITRARY SURFACE* 

BY HENRY BLUMBERG 

Let z=f(x, y) be an arbitrary surface S, in the sense that 
f(x, y) is an arbitrary one-valued real function of the real vari­
ables x and y. By the grade of a segment joining two points A 
and B, we understand the absolute value of the tangent of the 
angle which AB makes with the :ry-plane. The point A = (£, rj, f ) 
of the surface S is said to be of bounded grade—or S is said to 
be of bounded grade at the point (£, rj)—if the grade of AB is 
bounded for all B = (x, y, z) of 5 at a sufficiently small "hori­
zontal" distance [{x — %)2 + (y — rj)2]112 from A. HA does not 
satisfy this condition, S is said to be of unbounded grade at 
(£, rj). It is the object of the present paper to prove the following 
theorem, which identifies the aggregate—for the totality of 
arbitrary surfaces—of sets of points of unbounded grade with 
the aggregate of sets of type Gô.f 

THEOREM, i The set of points (x, y) at which an arbitrary 
surface z=f(x, y) is of unbounded grade is a G8. Conversely if a 
Gs is given, there exists a surface z=f(x, y) such that this Gs is 
identical with the set of points (x, y) where the surface is of un­
bounded grade. 

PROOF. If P — (x, y) is a point at which the given surface S, 
represented by z=f(x, y), is of unbounded grade, we may, for 
every positive integer n, find a point Pn = (xni yn) such that the 
distance d{PPn) between P and Pn is less than \/n, and 
g(f, PPn) >n, understanding by g(f, PPn) the grade of the seg­
ment joining the points of 5 corresponding to P and Pn. En­
close P and Pn in a circle Cp^, regarded as made up only of 

* Presented to the Society, April 16, 1927. 
t A Gs is the product of ^ o open sets. The notation is due to Hausdorff. 
% The direct part of this theorem is stated by W. H. Young for the case of 

a function of one variable; see Arkiv for Matematik, Astronomi och Fysik, 
vol. 1 (1903). 
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interior points, of diameter <2d(PPn). Let Gn equal the sum 
of the C-jP for n fixed and P ranging over the set U of points at 
which S is of unbounded grade; and let P = Hi°Gtt. We show 
that T=U. Of course, since every point of £/is in Gn for every 
», we have U £ T. Suppose Q is in Cf. Then either \f(Q) - / ( P ) \ 
o r \f(Q)—f(Pn) |, where / (P) =ƒ(#, y)y with similar meaning for 
ƒ((?) and jf(Pn), is not less than \ | /(P) - / ( P n ) |. Since d(QP) 
and d(QPn) are both less than 2d(PPn), we conclude that either 
£(ƒ, QP) or g(f, QPn)>g(f, PPn)/±>n/4. It follows that if Q 
is in some Cpw) for every n, then 5 is of unbounded grade at Q. 
Hence T^U, and therefore T=U. 

To prove the converse part of the theorem, we suppose that 
JJi°°Gn is a given product of open sets Gn lying in the :ry-plane. 
Let G ( n ) =JJ iG n , and Pn = the complement of G(n) with respect 
to the :ry-plane. In terms of these Fn, we shall define the 
surfaces z=fn(x, y); and z=f(x, y) =^>2ifn(x, y) will be the re­
quired surface having bounded grade at the points o{^^TFn and 
unbounded grade at the points of JJ^Gn. 

To this end, we suppose that Tn = {Q(n)} is, for every positive 
integer n, a system of non-overlapping squares Q(n) lying in G(n\ 
such that every point of G(n) is in the interior or on the boundary 
of at least one Qin) of Tn. We define fn(x, y) as 0 at the points of 
Fn and at the boundary points of the Q(n) ; if P=(x, y) is an 
interior point of the square Q (n),we set 

fn(P)=fn(x,y)=Pnd
(
p
n\ 

where dfî is the distance from P to the boundary of <2(n),and 
pn is a number, depending on n but not on the varying Q{n) of 
Tn, and subject to certain relations to be stated presently. 
We suppose furthermore that Pn+i is a "subdivision" of 
Tn{n — \, 2, • • •} in the sense that every Q(n+1) of Tn+i lies in 
just one <2(n) of Tn. Let 2g(n), which may vary, as Q{n\ n fixed, 
varies, be the length of side of Q(n). Then, as we may, we select 
the pn and qM in such a way that 

(a) p n / v
/ 2 > Mn-i + n{n ^ 2); P l = 1; 

(b) Pnq^ <d*/2»\ 

(c) pnq
{n) < q^n~l). 

Here Mn represents the upper boundary, which is evidently 
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finite, of the grade of a segment with end points on the surface 

z = sn(x, ?)=]£?ƒ,(*, y), 

for example, M\~ 1 ; and dn, which depends, for n fixed, on Q(n), 
is the minimum distance from the boundary points of Q(n) to 
Fn; moreover, inequality (c) is to be understood as demanded 
only in case the square Q(n) of side 2g(n) lies in, or has at least 
one boundary point in common with the square (2(w-1) of side 
2q{n~1). We now set f(x} y)~^\fn{x1 y), and observe that ƒ 
exists. For, by the definition of fn and inequality (b), if P is 
an interior point of some Q(n) of Tn, then 

fn(P)=pndfSpn(LM<dlP/2\ 

where dnp is the minimum distance from P to Fn. Since dnp does 
not increase with n, and fn(P) = 0 if P is interior to no Q(n) of Tn, 
it follows that 2^/ n (P) is convergent. We shall now prove that 
ƒ has the required properties. 

First, let P be a point of Fn. If p>n, and P ' is a point of Gv 

lying in the interior of the square Q(p) of TV) we have, by in­
equality (b), 

pvq^ p,ç<"> dv d{PP') 
g(f„ PP') < — < — < — < — • 
*U d(PP') d„ 2' V 

If P V P is interior to no Q<"> of TVJfy(P
f) = 0, and since/„(P) =0, 

we have #(ƒ„, P P ' ) = 0. It follows, if rn(x, y) =X)n+i/*(*, y), that 
g(rnj PP')<d(PP') for every point P'^P. Since the surface 
z = sn(x, y) is of bounded grade at every point, and 

f(x, y)=sn(x, y)+rn(x, y), 

we conclude that the surface z=f(x, y) is of bounded grade at 
every point of every Fn, and therefore of bounded grade at every 
point oî^r,Fn. 

Now let P be a point of JjGn, and Qin) a square of Tn contain­
ing P in its interior or on its boundary. Then there is a point 
P ' in Q<»> such that d(PP')^q™/2 and g(/n, PP')^pn/\/2. 
Since g(sn-u P P ' ) ^ ^ n - i , we have, by inequality (a), the rela­
tion g(sn, PPf)>n(n^2). Let v be an integer greater than n. 
If P and P' both belong to G{v) there are two squares of Tv, 
possibly identical, the one containing P and the other P ' ; let 
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Q(u) be the one with the larger (or at least not the smaller) side 
q(v). Then 

g(/„ PP') ^pvq^/d{PP')<2pvq^/q^\ 

Moreover Q(v) lies in a Q^-1^ and this in turn in a (2("~2) and so 
on down to Ç(n+1), which lies in or has a boundary point in 
common with Q(n). Therefore, in virtue of inequality (c), 

g(/„ PP') < 
2q(-v~l) 2q(v~1) < / ( n + 1 ) 

g(n) ~ ^(,-2) ç(n) 

1 1 1 
< 2 < 

Pv-l Pn+1 2V~n~2 

since pn>2 for w > l . The reasoning here implies at first that 
v>n + l, but the final inequality is valid for v = n + l also, and 
evidently, too, if either one or both of the points P and P ' lie 
in Fv. Hence 

g(r«, PP') < t -7_--2 = 4. 

Therefore, for w ^ 2 , 

g(/, PP') è g(sn, PP') - g(rn, PPO > n - 4. 

Since P belongs to JJGW, a point P' satisfying the last inequality 
can be found for every positive integer n^2; and since PP', 
together with q(n) is, by (c), infinitesimal as n—>oo, we conclude 
that the surface z=f(x, y) is of unbounded grade at P . 

REMARK. The proof has been given for a surface z=f(x, y) 
lying in a euclidean space, but the same reasoning applies to 
euclidean espace . In fact, with certain modifications of the 
argument not hard to discern, our theorem, including the con­
verse part, can be extended to any metric space, assumed, of 
course, if the theorem is to retain significance, to be without 
isolated points. The triangle postulate d(PiP2)+d(P2P3) 
^d(PiPs) for such a space turns out to be an adequate sub­
stitute for metric relations in the plane frequently utilized in 
the proof. For such an abstract space, we should, for example, 
change the squares to "spheres" ; however, to show that G(n) is 
the sum of non-overlapping spheres Q(n\ boundary included, we 
make use of Zermelo's Theorem on Normal Order. 
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