
INVARIANT METHODS IN CLASSICAL 
D I F F E R E N T I A L GEOMETRY* 

BY W. C. GRAUSTEIN 

There are two well known developments of classical differ­
ential geometry by invariant methods which are systematic and 
comprehensive, namely those of Cesàrof and Ricci.t Ricci's 
tensor analysis is so familiar as to need no detailed description, 
and the methods of Cesàro may perhaps best be set forth by 
comparing them with those of Ricci. In making this compari­
son there are two questions of major importance to consider, 
the one having to do with the point of departure of the theory, 
and the other with the method of differentiation. 

Ricci based his developments on an analytic representation 
of the manifold under consideration. On the other hand, it was 
a matter of principle with Cesàro to get along without a fixed 
coordinate system to which to refer the manifold. Perhaps it is 
this strict adhesion to purely intrinsic geometry that has stood 
in the way of a more general adoption of Cesàro's methods. In 
any case, the opinion seems to be generally held that a more 
powerful theory is obtainable by combining the purely intrinsic 
methods with invariant methods based on representations by 
means of parameters or coordinates. 

In contrast to Ricci's method of covariant differentiation, 
Cesàro employs the older method of intrinsic differentiation, 
differentiation along a curve with respect to the arc of the 
curve.§ It is probably the general opinion that here, too, 
Ricci's choice is the better one. This opinion is undoubtedly 
justifiable in the case of manifolds of higher dimensionality, but 
it is a question whether it can be upheld in the case of the mani­
folds of classical differential geometry. 

* An address presented to the Society at the request of the program com­
mittee, April 18, 1930. 

t Lezioni di Geometria Intrinseca, 1896. 
t Lezioni sulla Teoria délie Superficie, 1898; also, Ricci and Levi-Civita, 

Méthodes de calcul différentiel et absolu et leurs applications, Mathematische 
Annalen, vol. 54 (1901), pp. 125-201. 

§ The method was used earlier by various writers, notably, Lamé, Bonnet, 
Gilbert, and Enneper. 
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In comparing the two methods in this case, let us, for ex­
ample, consider the theory of a surface in euclidean 3-space. 
Fundamental in this theory are the three quadratic differential 
forms of the surface, and linear differential forms which, when 
equated to zero, represent families of curves on the surface. 
From the point of view of invariant theory, the important prob­
lem consists in finding the invariants of this system with respect 
to changes of parameters. We pass over the algebraic in­
variants of the system,—they are readily found. It is invariants 
depending on further differentiation which interest us. 

Intrinsic differentiation of invariants yields new invariants 
as a result. On the other hand, covariant differentiation does 
not give rise immediately to new invariants. Applied to in­
variants or to tensors, it yields first new tensors, and only 
secondarily, by application of algebraic processes to these 
tensors, does it give rise to new invariants. It is in this way, 
for example, that geodesic curvature is introduced. 

Equations expressed in terms of the components of tensors 
and their covariant derivatives are not, in general, invariant. 
This is the case, for example, for the equations corresponding to 
those of Codazzi. As a matter of fact, Ricci does not leave final 
results, such as these, in tensor form, but reverts to the use of 
actual invariants and their intrinsic derivatives. 

But the intrinsic derivatives are, in themselves, sufficient. 
Covariant differentiation is only an intermediate process which 
is not only unnecessary, but also disadvantageous in that, in 
dealing essentially with tensors rather than with invariants, it 
requires the use of non-invariant quantities and equations. 

We have noted that Cesàro's use of intrinsic differentiation 
was divorced from any fixed analytic representation of the 
surface. The introduction of intrinsic differentiation in con­
nection with a parametric representation of the surface has been 
carried out by various authors, notably, Lilienthal,* Knob­
lauch,! and Blaschke.J However, in none of these treatments 

* Über geodàtische Krümmung, Mathematische Annalen, vol. 42 (1893), 
pp. 511-516; Vorlesungen über Differentialgeornetrie, vol. II, 1913, Part IV. 

f Grundlagen der Differentialgeornetrie, 1913, pp. 56, 89, 191, 201, 205, 255, 
351, 389, 522, 572. 

t Vorlesungen über Differentialgeornetrie, vol. I, 3d edition, 1930, pp. 
123-145, 181-190, 289-292. 
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is full use made of the connection with the parametric repre­
sentation. In fact, the importance of this connection for the 
development of a comprehensive and powerful theory seems not 
to have been completely realized. 

The theory set forth in this paper aims to emphasize this con­
nection, as well as to show the advantages of the use of direc­
tional derivatives. It also introduces two further tools, Jacobi­
ans and a modified form of intrinsic differentiation. Jacobians 
are employed in establishing the connection with the parametric 
representation, in obtaining invariant vectors and functions, 
and in introducing directional derivatives. The modified direc­
tional derivatives cooperate with the ordinary directional 
derivatives to yield a simpler, and, it is hoped, a more powerful, 
theory.* 

The application of the theory has been restricted here to 
surfaces in euclidean 3-space. It will be evident, however, that 
the methods employed have a wider field of usefulness. 

A. T H E U S E OF JACOBIANS 

1. Invariant Vectors. Let x = x(u, v): 

x\ = Xi(u, v), x2 = x2(uf v), xs — Xz(u, v)] 

be a real surface, 5, referred to a system of real curves, and let 

u = u(u', v'), v = v(u', v') 

be an arbitrary change of parameters, with Jacobian A ^ 0 . 
Let <t>(u, v) and \//(u, v) be two functions of u and v, and de­

note their Jacobian by [<£, \//] : 

[<£, yp] = (j>u\l/v — < / ) ^ M . 

If 0 and \f/ are transformed by (1) into <t>' and \pf so that 
<^'=0 and \p'^\f/, then 

[*',*'] = A[*,*]. 

* The theory, as set forth, is a revision of a recent paper by the author, 
Méthodes invariantes dans la géométrie infinitésimale des surfaces, Mémoires 
de l'Académie Royale de Belgique (Classe des Sciences), (2), vol. 11 (1929). 
The reader is referred to this paper for references concerning the details, and 
also for examples illustrating the applications of the theory. 

f It is assumed tha t all functions are real, single-valued, and analytic 
throughout a certain domain of the real variables u, v. 
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Thus, the Jacobian of two absolutely invariant functions is a 
relative invariant of weight unity. 

A vector whose components are all relative invariants of the 
same weight is said to be a relatively invariant vector. 

If the components of a vector are the Jacobians of functions 
which are absolutely invariant with respect to an arbitrary change 
of parameters, the vector is relatively invariant. 

A great majority of the important relatively invariant vec­
tors have components formed essentially in this fashion. 

2. Invariant Vectors Normal to the Surface. The familiar 
vector* ,—-—. 

is a relatively invariant vector of weight one: 

a' = Aa. 

It gives rise to the unit vector, ft normal to the surface: 

a 
f = ; 

(a | a)1'2 

Since 
( a ' | a ' ) 1 / 2 = ± A ( a | a ) 1 ' 2 , 

r = ± r, 
where the plus sign or the minus sign is to be taken according 
as A > 0 or A < 0 . Hence f is an absolutely invariant vector, 
except perhaps for a change of signs. 

From x and f may be formed the two further vectors, 
T iU^Vy P = XUÇ v Çu%V) 

normal to the surface. 
The components of the three vectors a, /3, y may all be ex­

pressed in terms of Jacobians of invariant functions. We have: 

( ai = [x2y xd], ft = - [x2, ft] - [ft, *s ] , Ti = [ft, ft], 

(1) j a2 = [xz, xi], ft = - |>3, ft] - [ft, Xi], 72 = [ft, ft], 

Us = [xu x2], 03 = - [^i, f2] - [ft, ^2], 73 = [ft, ft]. 

* Vector notation. If a: alf aif as, and b: bi, b2, bs are ordered triples of 

numbers, their inner and outer products shall be denoted by (a \ b) and a b 
respectively: 

_^_ (a I b) = öi&i + a 2 ^ +Ö3&3, 
ûô : Ö2&3—Û3&2, azbi—aibz, aib2—a2bi. 
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Hence, a, /?, y are relatively invariant vectors of weight one, 
except that, in the case of /3, the signs may change. 

The vectors a, (3, y stand in close relationship, respectively, 
to the three fundamental differential forms of 5. We write 
these forms, with their discriminants, as follows: 

A = (dx\ dx) = Edu2 + Wdudv + Gdv2, D2 = EG - F2, 

B = - (dx\ O = edu2 + 2fdudv + gdv2, d2 = eg - f2, 

C = (df | df) = Edu2 + Ijdudv + Çdv2, V2 = 6Ç -J2. 

The inner product of two of the vectors a, /3, 7, or of one of 
these vectors with itself, is relatively invariant with respect to a 
change of parameters, and absolutely invariant with respect to 
rigid motions. The six invariants obtained in this way are 
essentially the fundamental algebraic invariants of the three 
quadratic forms with respect to changes of parameters: 

Form Discriminant Simultaneous Invariant 

A D2 = ( a | a ) , I(A, B) = (cx|/3), 

(2) B D2 = (a | 7 ) , I(A, C) = (0 |/3) - 2(a | 7 ) , 

c £2 = (7 |T), / ( B , C ) = (/3|7). 

Since a, 0, 7 are all normal to S, and a is never a null vector, 
7 and 0 are scalar multiples of a. The multipliers are respec­
tively K and K', the total and mean curvatures of the surface: 

7 = Ka, & = K'a. 

When these values of 7 and /? are substituted into (2), the 
six invariants in (2) become functions of (a \a), K, K'. Hence, 
all the algebraic relative invariants of the three fundamental 
forms with respect to changes of parameters are functions of 
(a\a), K, K'. But (a\a), K, K' form a complete system of 
absolute invariants, with respect to rigid motions, of the three 
vectors a, /?, 7. Hence, the system of absolute invariants with 
respect to rigid motions of these three vectors, which are them­
selves relatively invariant with respect to changes of param­
eters, is identical with the system of algebraic relative 
invariants of the three fundamental forms with respect to 
changes of parameters. 
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3. Invariant Vectors Tangent to the Surface, If 0(w, v) is a 
function which is absolutely invariant with respect to a change 
of parameters, there is associated with it the relatively in­
variant vector 

[x, 4>]: [xi, 0 ] , [x2, </>], [x3, 0 ] , 

and also the vector 

1 1 
(3) $ = — [X, 0j = (<l>vXu — <t>uXv)j 

which is absolutely invariant except perhaps for a change of 
signs. 

If </> is not a constant, the equation <j>(u, v) = const, represents 
on 5 a family of curves, and the vector $ at a point P of 5 lies 
on the tangent, at P , to the curve of the family which passes 
through P . We agree to direct the curve so tha t the positive 
direction is that of <£. 

Suppose that \p(u, v)= const, represents a second family of 
curves on S and let 

be the corresponding absolutely invariant vector. 
The inner product of one of the vectors 3>, ̂  with itself, or 

with the other, is evidently an absolute invariant. The in­
variants thus obtained are simply the familiar differential param­
eters of the first order : 

Ai</> = 

We have, also, 

where 

: ( * | * ) , Al(</>,^) = ( 

©i2(<A, -»A) = ( ü | ï i O , 
A 

öl(*,*) =—[*,*]. 

The usual formulas for the angle co from the directed curve 
0 = const, to the directed curve \// = const., namely, 

Ai(0, $) . 0i(0, i/O 
cos co = ; sin co = (A1(t>y'K^y12 (Ai*)1"^) 1/2 
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now reduce to the obvious forms 

COS to = 
($ l $)i/2(* I yy2 ($ I *yi*(? I *y2 

Since the length of the vector <£ is (Ai<£)1/2, the vector f<£> gives, 
in direction and length, the directional derivative of </>(u, v) of 
maximum value. It is the generalization of the gradient of a 
function in the plane. 

The unit vector, dx/ds, in the direction of the vector <£ is 

dx $ 1 [x,<l>] 
(4) — = $ = ds ( $ | <S>)1'2 D (AK/))1'2 

Hence, the rate of change of an arbitrary function x(u> v) 
in the positive direction of the curve (f){u, v) = const, is 

( , dx 1 [x, </>] 

ds D (AK/))1/2 

4. Differential Parameters of the Second Order. Geodesic 
Curvature. Jacobians of invariant functions may be employed 
to form scalar invariants as well as invariant vectors. 

For example, the differential parameter A20, expressed in 
terms of Jacobians in a form which is obviously invariant with 
respect to a change of parameters, is 

1 3 

(6) A20 = — X[**> $*]• 
D i=\ 

Equivalent to this is the expression 

i r a d i 
A 2* = TT V~(Xu I ^ ~ ~r(xv I *) h D Ldv du J 

which, when for <ï> is substituted the value given by (3), expands 
into the usual form. 

Again, the geodesic curvature of a curve 0(w, v) = const, is 
given by 

(7) - = - ^ Z [**,**]• 

For this relation may be put into the form 
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1 1 f d ( ! dx\ d ( I dx\l 
(7a) — = — — l *» — ) ( x « ~ ~ ) h 

p DLdu\ Ids/ dv\ Ids/J 

and may then be expanded into the classical formula of 
Bonnet. 

B. DIRECTIONAL DERIVATIVES 

5. Condition of Integrability. Let there be given a system of 
curves on 5 consisting of the family of curves C:<l>(u,v)= const., 
and the family of curves C':\p(u, v) = const. Assume that 
[<£, \p\ > 0 , that is, that the curves of the families are so directed 
that 0 <o)<T, where co is the angle from the directed curve C to 
the directed curve C', measured in the positive sense. 

The unit vectors, £ and £', in the positive directions of the 
curves C and C', are, by (4), 

(8) 

Hence 

dx 

and 

1 T <t>v 4>u ~| 
____ . Xy. ' ———————— JÇ I 

D L(Ai0)*'* (AK^)1 '2 J 

/ _dx _ i r ^v ^u i 
£ — — — — — — • _ _ _ _ _ JL"ir ~~~~' ' Jv i) I • 

ds' DL^y'* (A^)1'2 J 

xu sin co = £ H e, 

xv sin w = £ -\ £ , 

d\p dcj) 
dx sin co = £ H J'. 

( A ^ ' 2 * (A^)1 '2 

Thus, the linear element of the surface, referred to the 
system of curves C and C , is 

(9) sm2 co (dx dx) = 2 cos co • 
A_* (A^)1 '2 (A^) 1 ' 2 Ai* 

The differentials of arc, ds and ds', of the curves C and C , 
are, then, respectively, 

(10) <fc = — , ds' = + 
sinco (Ai^)1/2 sinco (Ai</))1/2 
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The arcs are measured in the positive directions of the curves, 
and the signs in (10) result from the fact that the functions 
(/> and xfr increase in the directions which lie to the left of the 
curves C and C', when these curves, looked at from the side of 
S in the positive direction of the normal f, are traced in their 
positive senses. 

The directional derivatives, dx/ds and dx/ds', of an arbitrary 
function x(^, v) in the positive directions of the curves Cand C', 
are, by (5), 

dx _ 1 I" <t>v <t>u 1 

(ii) 7s= l?LT^)^Xu " T^)^Xvs 
d_X 

ds 

Solving these equations for Xu and Xv, we have 

x _ i r ^ ^u i 

7' " ^L(Â"^^Xw "" T^P)^Xvi' 

_ _ t u _ dx <t>u dx 
Xu ~ sinco(Ai^1/2 ds sinw(Ai^)1/2 ds'' 

(12) 
^v dx <K dx 

Xv ~ sinto(An/01/2 ds sinco(Ai^))1/2 ds' 

Forming dx from these relations and introducing ds and ds' 
from (10), we find 

dx dx 
(13) dX = — ds + — ds'. 

ds ds' 
On the other hand, if we differentiate the first of the equations 

(12) with respect to v and the second with respect to u and 
equate the resulting expressions, the equation obtained re­
duces to 

ds' ds ds ds' a ds a' ds' 

where 

I d I d 
(15) — = —log (sin co (A^)1 '2), — = log (sin co (A^)1 '2). 

a ds a ds 

A necessary and sufficient condition that two functions of u and v, 
which we denote by dx/ds and dx/ds', be the directional derivatives 
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in the directions of the curves C and C' of a function x(ui v) is that 

ds' ds ds ds' a ds er' ds' 

When the condition is satisfied, 

/

dx dx 
— ds H ds'. 
ds ds' 

6. The Invariants 1/a, l/a'. In seeking the geometrie inter­
pretations of the invariants l/a and l/a' given by (15), we 
consider first the significance of their vanishing.* 

The curves C' are equidistant curves with respect to the curves 
C, that is, every two curves C' cut segments of equal length from the 
curves C, if and only if the invariant 1/a is zero. 

For, if I/o- = 0, the function sin co (Ai^)1/2 is constant along each 
curve C' and is, therefore, a function of \f/. Then, ds, as given 
by (10), is actually the exact differential of a function s(\[/), 
which is the common arc of the curves C measured from a fixed 
curve C' to an arbitrary curve C'. The argument may be 
reversed. 

The geometric interpretation of 

1 d 
— = — log (sin œ (Ai^)1/2) 
o ds' 

is now clear. It is a measure of the deviation from one another 
of the curves C' with respect to the curves C. When we think 
of d\f/ in (10) as having been given a fixed value, it is precisely, 
except for sign, the logarithmic rate of change, in the direction 
of the general curve C', of the element of arc of the general 
curve C. We shall call it the relative variation of the element of 
arc of the curve C with respect to the curve C.f 

The relative variation, 1/a, of the element of arc of C with 
respect to C' is taken in the positive direction of C', that is, in 
the direction on C' to the left of C in the sense described in §5. 

* The significance of the vanishing of 1/a and 1/a' is well known; see 
Lilienthal, Vorlesungen, vol. 2, p. 228. 

f It is to be noted tha t 1/a is unchanged when \p is replaced by F(\p). 
This is not true, for example, of (d/ds')(sin ^(Aii//)1/2). 
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Accordingly, we should take the relative variation, l/o - ' , of the 
element of arc of C' with respect to C in the direction on C to 
the left of C'. This is the negative direction on C. Hence, we 
should have, and, by (15), actually do have 

1 d 
— = log (sin co (AK/ ) ) 1 / 2 ) . 
<r ds 

From the law of change, with the direction, of the directional 
derivative, it is evident that 

d\p d</> 
sin co(An/01/2 = ; sin co ( A ^ ) 1 ' 2 = — • 

ds ds' 
Hence, we get the formulas 

1 d ( d\P\ 1 d /d\P\ 

which give new interpretations of 1/cx and 1/cr'. 
We suppose now that the curves C and C' form an orthogonal 

system: co = 7r/2, and compute their geodesic curvatures, 1/p 
and 1/p'. Substituting for xu and xv in (7a) their values in terms 
of £ and £', and setting, for dx/ds, £ and £' in turn, we find 

p ~~ DUu\ (Ait)112/ dv\ (Ait)112)J 
(16) 

P' ~ D LduKiAnfi1!*) ~ dvKiA^y/2)}' 

Hence, we have 

I d l i a 1 
(16a) _ = —log(A^)i/2 = _ , l o g ( A l 0 ) i / 2 . 

p os a p as a 
If the curves C and Cf form an orthogonal system, the relative 

variations of their elements of arc, 1 /a and 1/cr', are equal re­
spectively to their geodesic curvatures, 1/p and 1/p'. 

We thus have new interpretations of the geodesic curvatures 
of the curves of an orthogonal system. 

7. The Modified Directional Derivatives. The condition of 
integrability (14) tells us that the order of the operations repre-
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Vx 
vs7 

V dx _ 

ds' 

1 

a 

d 

ds 

-X' 

dX 

ds' 
+ 1 

7 
dx 

ds' 

sented by the symbols d/ds and d/ds' cannot be inverted. We 
propose to introduce modifications of the directional deriva­
tives d/dsy d/ds', which, when used in conjunction with these 
derivatives, will not only remedy this defect, but also render 
our methods more powerful and elegant. 

The modifications of d/ds and d/ds', which we shall denote by 
V/Vs and V/Vs', are defined as follows:* 

v * dx , 1 
(17) = + Xy 

Vs ds a 
According to the definition, 

V dx d dx 1 d% 

Vs' ds ds' ds a ds 

Hence, the condition of integrability (14) becomes 

(18) JL?Î.1?Î. 
Vs' ds Vs ds' 

A necessary and sufficient condition that Q(u, v)ds + Q'(u, v)ds' 
be an exact differential is that 

VQ_ = VQ^ 

Vs' Vs 

The modified derivative of a sum is the sum of the modified 
derivatives. But the standard law for differentiating a product 
does not hold for the modified differentiation. We have, 
instead, 

V(xiX2) VX2 dxi dx2 VXi 
= xi r X2— = xi h X2 

Vs Vs ds ds Vs 
The fact that one of the factors is subjected to ordinary differ­
entiation, and the other to the modified differentiation, works 
out advantageously in practice, as will be seen later. 

When the given system of curves is an orthogonal system, 
l / c r = l / p and l/cr/ = l / p ' . Consequently, in this case, both 

* Though the author came upon it otherwise, the reader will find the 
germ of the idea of the modified directional derivative in the abbreviations 
(d/ds + l/p')x and (d/ds'—\/p)x employed by Cesàro, loc. cit., in the discus­
sion of the case in which the curves C and C' form an orthogonal system. 
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modified directional derivatives are identical with the corre­
sponding ordinary derivatives if and only if S is a plane and 
toe system of curves consists of two orthogonal pencils of 
straight lines. 

On the other hand, in the general case, both modified deriva­
tives coincide with the corresponding ordinary derivatives for 
every system of curves which clothes S in the sense of Tcheby-
cheff. For 1/<T and I/o-' both vanish if and only if the curves 
of each family of the system are equidistant with respect to the 
curves of the other family, and this is a characteristic property 
of a system of curves which clothes the surface. 

C. T H E CANONICAL DIFFERENTIAL EQUATIONS OF THE 

FAMILIES OF CURVES OF A SYSTEM 

8. The Canonical Differential Equations, Derived from Finite 
Equations. In connection with the system of curves consisting 
of the family of curves C\<j>(uy v) = const, and the family of 
cvrves Cf:\{/(u, v) = const., we recall the expressions 

d\l/ dé 
(10) ds = , ds' = 

sinco(An/01/2 sin co (AK/))1/2 

for the differentials of arc of the curves C and C . 
When we set 

s inc^A^) 1 ' 2 ' 

smœ(AKt>)112' 

these expressions become 

(20) ds = A'du + B'dv, ds' = Adu + Bdv. 

Since </>, \f/, Ai0, and AX^ are absolute invariants with respect 
to a change of parameters, and sin co is an absolute invariant 
except perhaps for a change of signs, the linear differential 
forms Adu-{-Bdv and A 'du-\-Bfdv are absolute invariants except 
perhaps for a change of signs. 

It is evident that 

Adu + Bdv = 0, A'du + B'dv = 0 

(19) 

A' = 

A = 

sinco(AnA)1/2 
; B' = 

sinco(A1</>)1/2' 
B = 
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are differential equations, respectively, of the families of curves 
C and C'. We shall call them the canonical differential equations 
of these families and employ them exclusively, from now on, to 
represent the families. 

The presence of the factor sin œ in formulas (10) shows that a 
canonical differential equation of a family of curves C is deter­
mined only when there is associated with the family C a second 
family C . In other words, the concept of canonical differential 
equations applies only to two families of curves forming a sys­
tem, and not to individual families of curves. 

We proceed now to express the theory thus far developed in 
terms of canonical differential equations and the coefficients 
A, B} A', B' contained in them. 

From (9) we have, as the new form of the linear element, 

(21) (dx\dx) = ds2 + 2 cos co dsds' + ds'2. 

According to (8), 

sin co sin co 
£ = (Bxu - Axv), £' = (B'xu - A'xv). 

Substituting these expressions into 

££' = f sin co, 
we find 

D = smœ(A'B - AB'). 

Hence, when we set 

(22) D = A'B - AB', 

we have 

D = D sin co. 

The expressions for £ and £' now become 

1 1 
(23) ? = —(Bxu - Axv), £' = - —(B'xu - A'xv). 

Similarly, we have 

dx 1 dx 1 
(24) — = =(Bxu - AXv), — = - -=iB'x» - A'xv) • 

ds D ds D 

The condition of integrability is of the same form as before, 
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where now the values of 1/c and I/o-' are given by the much 
simpler expressions 

(25) — = —(SJ - Ai), — - = ( £ „ - Av). 
a D a D 

From (24) and (25) it is readily seen that the modified direc­
tional derivatives have the values 

ds a D 

dx 1 l r 

^ X= - [{B'x)u-(A'x)A-
ds a D 

Thus, the vanishing of Vx/Vs is a condition necessary and 
sufficient that x be an integrating factor of Adu+Bdv, and the 
vanishing of Vx/Vs' is a necessary and sufficient condition 
that x be an integrating factor of A'du+B'dv.* 

9. Derivation of Canonical Differential Equations from Arbi­
trary Differential Equations. The canonical differential equa­
tions of the families of curves C and C' are readily found, as we 
have seen, when the families of curves are defined by finite 
equations. They may be found with equal ease, without 
quadratures, when the families of curves are defined by differ­
ential equations, chosen at random. 

Let differential equations defining the curves C and Cf be 

C: Mdu + Ndv = 0, C": M'iu + N'dv = 0. 

We may assume that MN' — NM'>0, since otherwise we could 
change the signs of, say, Mr and N'. Let, then, I(u> v)>0 and 
I\u, v)>0 denote positive integrating factors of Mdu + Ndv 
and M'du + N'dv, respectively, and form 

* The corresponding conditions in terms of the ordinary derivatives are, 
respectively, 

dlogX = _ } dlogX _ J[ 

ds a' ds' o-
and these conditions are in keeping with the geometric interpretations of 
I/o- and I/o-'. In particular, when I/o- and I/o-' are both zero, the linear forms 
A'du+B'dv and Adu+Bdv are exact differentials, s and sf are parameters 
for the surface, and the linear element (21) becomes characteristic for a system 
of curves which clothes the surface. 

(26) 

vx 
Vs 

VX 

Vs' 
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(27) d<t> = IMdu + INdv, # = I'M'du + I'N'dv. 

Then [</>, ̂ ] > 0 and sin co>0. 
The quantities A, B, A', B' may now be computed from (27), 

by means of (19), and, what is more important, the values ob­
tained for them are independent of I and I'. 

D. T H E SURFACE REFERRED TO AN ORTHOGONAL 

SYSTEM OF CURVES 

10. The Differential Equations of the Vectors of the Trihedral 
£, £', f. Let the canonical differential equations of the families 
of curves C and C' of an orthogonal system* on S be, respec­
tively, 

Adu + Bdv = 0, A'du + B'dv = 0. 

The important formulas for this case may be obtained from 
those of §8 by setting sin co = l, D = J9, and replacing l/cr and 
l/cr' by 1/p and 1/p'. 

Thus, the unit vectors £ and £' in the positive directions of the 
curves C and C' are 

1 1 
(28) £ = — (Bxu - Axv), ? = (B'xu - A'xv), 

where 
D = A'B - AB'. 

Hence 

(29) xu = A'H + A£', xv = B'S + Bl'. 

For the geodesic curvatures of C and C' and the directional 
derivatives in their positive directions, we have 

1 l X 1 

p D p D 

(30) 

ö x l dx 1 
— = — (Bxu - AXv), —. = - —(B'xu - A'xv), 
ds D ds D 

Vx 1 r àx 1 
- = - ( ^ x ) w - ( ^ x ) , ] = - + - x , 
Vs D ds p' 
Vx 1 , àx 1 

- - = - - , (*'x). - (A'x),] = ^ - - x , 
Vs T>' ds' p * For the further development of the treatment of the surface referred to 

an arbitrary system of curves, see author, loc. cit. 
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where 
D = A'B - AB'. 

We also have 
dx à% 

dx = —ds H ds', 
ds ds' 

where 
ds = A'du + B'dv, ds' = Adu + Bdv. 

The unit vectors £, £', in the positive directions of curves 
C, C , and the unit vector f normal to the surface form a rectan­
gular trihedral which has the same disposition as the axes: 
(££'f) = l- We propose to find expressions for the directional 
derivatives, in the directions of the curves C and C', of the 
vectors of this trihedral, and to write them as linear combina­
tions of these vectors. Since £, £', f are mutually orthogonal 
unit vectors, the determinant of the coefficients in the linear 
combinations which are respectively the values of the direc­
tional derivatives of £, £', f in a specific direction is skew-
symmetric. 

We obtain the values of d£/ds, d£'/ds, dÇ/ds by considering 
an arbitrary curve C. The geodesic curvature of C is 

1 = h i *'> 
P R 

where rj is the unit vector in the positive direction of the princi­
pal normal to C, and 1/R is the curvature of C. But rj/R = d£/ds, 
and hence 

(31) 7-fcr)--(.-h> 
where the second of the two values results from the fact that 

(«m=o. 
The normal curvature of C is given by the formula 

1 (dx | dt) edu2 + 2fdudv + gdv2 

r (dx \ dx) Edu2 + 2Fdudv + Gdv2 

Since, along C, (dx \dx) =ds2 and dx/ds = t;, 

(32) 7--(d0-(dr> 



506 W. C. GRAUSTEIN [August, 

The familiar formula, 

1 (£ƒ - Fé)du2 + (Eg - Ge)dudv + (Fg - Gf)dv2 

T " D(Edu2 + IFdudv + Gdv2) 

for the geodesic curvature of C amounts to nothing more than 

T \as ds / 

But dx/ds = % and £f = —J'. Hence 

i /an \ /a^i \ 
r \ds\ / \ds\ / 

F o r m u l a s (31), (32), (33) are equiva len t to 

ai _ 
ds 

ô£' 1 

4) f = - - f 
ôf 1 
as r 

1 1 

- « ' + - r , 
p r 

i 
- - r , 

T 

1 

T 

The trihedral for the general curve C' which corresponds to 
the trihedral £, £', f for the curve C is £', £" = — £, f. Hence, 

(35) 

where 1/p', 1/r', 1/r' are respectively the geodesic curvature, 
the normal curvature, and the geodesic torsion of the curve C'. 

Consider, now, the condition of integrability (14) of the 
equations 

dx dx 
(36) - = {, - = {', 

OS OS 

dl' _ 

ds' 

ds' 

dl-
ds 

1 

7* 
1 

r 

1 1 

p' r' 

1 

T 

1 

- 7 £ 
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namely, 

d£ d£' 1 1 
(37) ^ A = _ ^ + r . 

ds ds p p 
When for ö£/ds' and d£'/ds are substituted their values from 
(34) and (35), this condition reduces to 

1 1 

7 " ~~ 7 ' 
Thus, the required system of differential equations for the vec­

tors £, (•', f is 

ds 

as' l 
(38) ± = - _ £ 

OS p 

af l 
_ = - - { + 
ds r 

We know that 

1 1 d$ 

p r as 

l di! 

r ds' 

7 r ' ds~'~ 

dx = £ds + £ds'. 

By the last pair of equations in (38), 

1 

"7f 

1 
— * • 

T 

1 1 - r — r , 
p T 

i 

r 

1 

«C _(±{_±r)* + (_±{ + ±,)*.. 
Hence 

(d# | d#) = ds2 + J / 2 , 

1 2 1 
(39) - (dx I df) = — ds2 dsdsf + —ds'\ 

r r r' 

<*I #> -Q + T) ds2 - 7K'dsds' + (pi+ 7)^ • 
The three fundamental quadratic forms of the surface are ex­

pressible in terms of (a) the canonical linear forms, ds'= Adu-{-Bdv 
andds = A'du+B'dv, and (b) the normal curvatures, 1/r, 1/r', and 
geodesic torsion, 1/T, associated with the curves C and C'\ 
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It is evident that we have now all the advantages of having 
the surface referred to the given orthogonal system of curves, 
while the parametric curves themselves remain arbitrary. 

11. The Fundamental Theorem. The relation (37), which ex­
presses the fact that equations (36) are compatible, has already 
been taken account of in equations (38). 

If we apply the condition of integrability, in the form 

V dx V dx 

Vs' ds Vs ds' 

to the directional derivatives of £, £', f in (38), we obtain the 
following relations:* 

(40) 

(41) 

v / i \ v / i \ i i 
( — ) ( — ) = K, where K = 

Vs'\pJ V A P ' / rr' r2 

V / 1 \ V / 1 \ 1 1 1 1 

-T(-)+ -(-) + - - + - - = 0> 
Vs' \r / VS\T / p r' p' r 

i(i^+i(i).n.ii., 
Vs \rf / Vsr\T / p ' r p r Equation (40) is the Gauss equation, expressed invariantly 

with reference to the given orthogonal system, and equations 
(41) are the equations of Codazzi, in similar form. 

It is clear from (30) that equations (40) and (41) are equa­
tions which connect the seven fundamental quantities, A, B, 
A', B', l/r, l/r', l/r, and their partial derivatives with respect 
to u and v. They constitute necessary conditions for the 
existence of a surface x — x(u, v) for which the equations 
Adu+Bdv = 0 and A'du+B'dv = 0 define an orthogonal system 
of curves C and C' whose normal curvatures and geodesic 
torsions are l/r, l/r' and l / r , —l/r . 

* In applying the condition, we have to find the modified derivatives of 
products of the form ko, where k is a function and ô is one of the vectors 
£, £', f. To one factor of the product we must apply the ordinary differentiation, 
and to the other, the modified differentiation. The advantage of this is evi­
dent. For, we may take ö as the factor to which to apply the ordinary dif­
ferentiation, and the ordinary derivatives of £,£',$" are just what are given us 
in (38). 
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These conditions are also sufficient. For, if the seven quanti­
ties in question satisfy equations (40) and (41), the system of 
differential equations (SS), subject to the conditions 

« lö = w\t') = (r ID = i, (* ir) = a in = (*' if) = o, (*rr) = i, 
is integrable. The resulting rectangular trihedral of unit vec­
tors, £, £', f, is determined to within a rigid motion. 

When the expressions found for £ and £' are substituted.in 
equations (36), these equations are integrable. A surface, 

- ƒ £<fr + £W, 

is thus determined to within its position in space. Since the 
three fundamental forms of this surface are as given in (39), 
it is readily shown to have the desired properties. 

If two linear differential forms, Adu+Bdv and Afdu-\-B'dv, 
and three functions, 1/r, \/r', and 1/r, are given, such that equa­
tions (40) and (41), where 

{A'x)vl 

D = A'B - AB' ^ 0, 

are satisfied, there exists a surface, unique to within its position 
in space, on which the equations Adu+Bdv = 0, A'du+B'dv — O 
define two orthogonal families of curves which have 1/r, 1/r' as 
their normal curvatures, and 1/r, —1/r as their geodesic torsions. 

We permit ourselves, at this point, one application. The 
equation K = 0, that is, 

1 l 

= ——\BU Av ), 
P D 

VY 1 
- = -[(Bx)u-(AX)v], 
Vs D 

and 

1 1 

p V 

£-->*>• 

V 

says that the expression 

1.(1). 1(1), 

ds ds' 

7 + V 
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is an exact differential. Thus, there exists a function, 0(u, v), 
for which 

dB 1 dB 1 

ds p ds' p' 

But these are precisely the conditions that the expressions 

edi[(A - iA')du + (B - iB')dv], 

e-ei[(A + iA')du + (B + iB')dv], 

be exact differentials, as can be immediately verified. The 
product of the two expressions can, therefore, be written in the 
form du? +dv?. But this product is the linear element of the 
surface. 

Thus, we have established, in a simple and elegant manner, a 
theorem whose proof by the usual methods is decidedly labori­
ous, namely, the theorem to the effect that the linear element 
of a developable surface can be reduced by quadratures to the 
form du2+dv2. 

12. The Surface Referred to the Lines of Curvature. We shall 
denote the curves of the two families of lines of curvature by 
Ci and C2, the canonical differential equations which represent 
them by 

Aidu + Bidv = 0, A2du + B2dv = 0, 

and the unit vectors in their positive directions, by £(1), £(2). 
The following formulas are, then, self-explanatory: 

D = A2B1 - AXB2, 

1 1 /dB2 dA2\ 1 1 /dBi dAA 

pi D \du dv / p2 D \du dv / 

d% 1 dX 1 
(42) — = — (BiXu - AiXv), — = - — (B2Xu - Aw*), 

dsi D ds2 D 
VY 1 VY 1 
— = - [ ( * i x ) « ~ U i x ) . ] , — = - -[(B2X)u - (A2X)V\. 
Vsi D Vs2 D 

Since the lines of curvature are characterized by the vanishing 
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of the geodesic torsion, the fundamental differential forms of S 
are, in this case, 

1 1 
dsi2 + ds%2, —ds i2 H 

1 

f l2 

and the fundamental differential equations, 

dx dx 
— = p»f _ ÔSi ÔS2 

d^ 1 1 

(43) dH 

_ — — fed) 
dSl Pi 

df 1 
— = £ (1\ OS! f i 

= J ( 2 ) , 

ds2 

ds2 

^ - __ 
ds2 

1 + — ds22 , 
' 2 * 

1 
- ^ ( 2 ) , 
P2 

1 1 
-*(i) + - r , 
P2 ^2 

1 
£ ( 2 ) # 

^2 

The Gauss-Codazzi equations take the simple forms 

V 

V £ 2 \ p i / V s i \ p 2 / r^2 
(±)_-L(±)_,. * = A 
\ P i / Vsi\p2/ rxr\ 

(i) + l l . o k - L ( l ) - ± i . 
V l / Pi f 2 V ' 5 i \ r 2 / P2 f\ 

The fundamental theorem is also simpler, since it bears 
merely on the six functions A\, J5i, A2, 5 2 , 1/Yi, l/r2. 

13. 4̂ Complete System of Invariant Vectors. We proceed to 
establish the following theorem, in which we refer to the unit 
vectors in the positive directions of the lines of curvature as 
the principal vectors. 

Let ri£(1), r2£(2), f be three vectors whose components are func­
tions of u and v, and suppose that f(1), £(2), f are unit vectors which 
form a rectangular trihedral having the same disposition as that 
of the axes. Form the quantities 

^ 1 = - r 2 ( r . i £ ( 2 ) ) , Bt = - r 2 ( r , i ê ( 2 ) ) , 
^ 2 = ~r^u\^), B2 = - f l ( r , I £<D), 

D = A%BX - AXB2 = fif2tt(1)£(2)iv?,), 
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and substitute them in the expressions for d/ds\, d/ds2y V/Vsi, 
V/Vs2 given in (42). Then, if the equation 

A£(1) A£(2) 

(45) -f- = -f-
As2 Asi 

is satisfied, there exists a surface, uniquely determined to within a 
translation, whose normal vector is f and whose principal vectors 
and principal radii of normal curvature are, respectively, £(1), £(2), 
and r\, r2.* 

Since equation (45) is satisfied, the equations 

dx dx 
(46) — = *<», — = {<», 

OSi OS2 

where d/dsh d/ds2 are defined as in the theorem, are integrable. 
A surface x = x(u, v) is thus determined to within a translation. 

According to (46), the unit vector normal to this surface is f. 
Since, by the definitions of A1, B\, A 2, B2, given in the theorem, 

A2 Ax B2 Bi 
- r„ = - £ ( i ) + - £ ( 2 ) , - r„ = - s ( l ) + —« ( 2 ) , 

or 

*r 
d$i 

1 
- — £ ( 1 ) , 

f l 

*r 
ds2 

1 
g(2) 

^2 

it follows that the surface has £(1), £(2) as its principal vectors 
and 1/ri, \jr2 as its principal normal curvatures. 

I t follows from the theorem that n£(1), r2£(2\ f form a com­
plete system of invariant vectors, or that the vectors £(1), £(2), f 
and the functions r\, r2 form a complete system of invariants, 
for a given surface. 

A similar theorem may be stated in the case of an arbitrary 
orthogonal system. Here, it is the vectors £, £', f and the func­
tions l/V, 1/r', 1/T which form the complete system of in­
variants. 

14. Integrating Factors. From §8, we have the following 
result. 

* It is assumed tha t /V2(£(1)£(2)£*«£») >0î m particular, the case of a de­
velopable surface is excluded. 
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Conditions necessary and sufficient that m(u, v) and n(u, v) be 
respectively integrating factors of Adu+Bdv and A'du+B'dv are 

Vs 

d log m 1 

ds p'' 

Vn 

Vs' 

d log n 1 

ds' " p 

or 

A corresponding theorem is valid in the case of the canonical 
linear differential forms A\du-\-B\dv and A^du-^-B^dv which, 
when equated to zero, define the lines of curvature. 

These theorems form the basis for a systematic and compre­
hensive theory of integrating factors for the differential equa­
tions of families of curves on the surface. They enable us, not 
only to discuss the cases in which the families of curves can be 
found by quadratures, but also to exhibit the actual integrating 
factors. 

We content ourselves with one example, that of an isometric 
system. If Adu+Bdv and A'du+B'dv have a common in­
tegrating factor, m(u, v), then 

d log m l d log m 1 

ds p' ds' p 

and conversely. But the condition of compatibility of these 
equations is 

m 2.(±) + _L(4)_0. 
Vs\pJ Vsf\p'/ 

If this condition is fulfilled, m(u, v), where 

/

ds' ds 
7' 

P P 

is a common integrating factor of Adu-\-Bdv and A'du+B'dv> 
and the finite equations of the curves C and C' can be found by 
quadratures. 

Furthermore, if we set 

m(Adu + Bdv) = dv\, ni{A'du + Bfdv) — duh 

the linear element becomes 
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1 
ds2 — (dui2 + dVi2), 

m2 

where 

/
dv\ du\ 

P P' 

The condition (47) that the curves C and Cf form an isometric 
system remains unaffected when ordinary derivatives are sub­
stituted for the modified derivatives. Hence, it is essentially 
Bonnet's condition.* 

15. Formulas of Transformation from one Orthogonal System 
to Another. It will suffice for our purposes to develop the formu­
las of transformation from the lines of curvature Ci, C2 to an 
arbitrary orthogonal system of curves C, C . 

Let the angle, at an arbitrary point P , from the directed 
curve C\ to the directed curve C, measured in the positive 
direction, be a(u, v). Then the vectors £, £' may be obtained 
from the vectors £(1), £(2) by rotating these vectors about P in 
the tangent plane through the angle a. Thus: 

£ = {W cos a + ^ sin a, 
(48) 

£' = — £(1) sin a + £(2) cos a. 
Since, by (29), 

A't + A? = A£™ +A1^
2\ 

B'S + B? = B£™ + B&*\ 

we obtain, as the transformation of Aidu+Bidv, A2du+B2dv 
into Adu+Bdv, A'du+B'dv: 

A du + Bdv = (Aidu + Bidv)cosa — (A2du + B2dv) sin a, 

^4'dw + B'dv = (̂ 4î w + iMfl)sina + (A 2du + B2dv) cos a. 

* Condition (47) becomes, when for 1/p and 1/p' are substituted the value 
given by (16a), 

~-~T loS (A^)1/2 ~ -~l~lo% (A^)1/2 = °> Vs ds Vs' ds 
or 

, 1 / 2 

This is the invariant form of the usual condition to the effect that , when the 
linear element is Edu2-\-Gdv2, the parametric curves form an isometric system 
if and only if log(E/G) is of the form U(u) + V(v). 
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The formulas of transformation of the ordinary directional 
derivatives are 

dx dx , dx . 
— = — cos a -\ sin a, 
ds dsi dso 
dx dx . , dx 
— = sin a H cos a, 
ds' dsi ds2 

and those of the geodesic curvatures, 

1 da cos a sin a 

(51) P dS " P l + P2 ' 
1 da sin a: cos a 

p ' d s ' pi p2 

These formulas are readily obtained from (30) by replacing 
Ay B, A', B' by their values in terms of A\, Bh A2j B2, as read 
off from (49). 

The formulas for the transformation of the modified deriva­
tives are now readily found to be 

Vx da Vx Vx . 
X — = — cos a -\ sin a, 

Vs ds' Vsi Vs2 

(52) 
Vx da Vx . VX 

h X— = s i n a H cos a. 
Vs' ds Vsi Vs2 

It is interesting, also, to note that Euler's formulas, 
1 cos2 a sin2 a 1 sin2 a cos2 a 

(53) — = + ; — = + , 
r Y\ r2 r r\ r2 

and the corresponding formula for the geodesic torsion, namely, 

(54) 
1 1 / 1 1 \ 

— = — i l s i n 2a , 
r 2 \ r i r2) 

are a direct result of our theory. 
For example, if we set for £' and dÇ/ds, in 

1 / Id£\ 
r \ Ids/ 
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their values, as given by (48) and (50), in terms of £(1), £(2), 
dÇ/dsi, ÔÇ/ÔS2, and replace dÇ/dsi and dÇ/ds^ by their values 
from (43), we obtain immediately formula (54).* 

From (53) and (54) we verify that 

1 1 
K = 

rr' r2 

From these same formulas we also find the relation 

/ l 1 \ 2 
I I tan 2a = — ; 
\r r'J T 

which defines the angle a in terms of quantities pertaining only 
to the curves C and C". Thus, when an orthogonal system of 
curves C and C' is given, as in §10, by its fundamental quanti­
ties, it is possible to determine precisely the position of the 
system with reference to the lines of curvature. 

It is evident, conversely, that the foregoing formulas permit 
us to pass from the fundamental quantities A\, B\, A2, B^ 
1/fi, l /r2 for the lines of curvature to the fundamental quanti­
ties A, B, A', B'', 1/r, 1/r', 1/r for any orthogonal system of 
curves C and C", provided we know the angle a(u, v) under 
which the curves of this system meet the lines of curvature. 
In particular, the canonical differential equations of the curves 
C and C' are readily found, when those of the lines of curva­
ture are known. But the canonical differential equations of 
the lines of curvature are easily obtained, by algebraic processes. 
In fact, we have 

A? = - i ( — - e) ^ 0, AJ = ^(e - —) ^ 0, 
L \ri / L \ m/ 

"'•-KT:-')*0, "-K'-f.)*0' 
where 

* The general method of using directional derivatives to establish formulas 
(53) and (54) is ascribed to Enneper; see Lilienthal, Encyclopâdie der Mathe-
matischen Wissenschaften, I I I D3, p. 168. 
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1 1 

ri r2 

Since ^42i?i —^4L#2 = A we may, in extracting the square roots 
of A i2, J5X

2 ,A£,B£, choose only one sign at pleasure, f The other 
three are then uniquely determined. 

16. Differential Parameters. The Significance of the Modified 
Directional Derivatives. Let us consider, first, differential para­
meters with respect to the canonical linear forms Adu+Bdv 
and A'du+B'dv, which, when equated to zero, define an 
orthogonal system of curves on S. 

We single out two differential parameters of the first order 
with respect to these forms, namely, the derivatives of a func­
tion <j)(u, v) in the positive directions of the curves C and C: 

d<j> 1 d4> 1 
— = —OB** - A**), — = - —(B'4>u - A'4>v), 
ds D ds D 

and four differential parameters of the second order: 

V dcj) V d<j) V d<t> V d<t> 

Vs ds vV ds Vs ds' Vs' ds' 

the second and third of which are identical. 
The fundamental differential parameters of the first and 

second order with respect to the linear element of the surface 
may be expressed in terms of these parameters related to the 
linear forms. We have 

/dA2 / < W 

dó dxl/ dé d\l/ 
(55) Ax(*,*)= - - + - - , 

ds ds ds ds 

d<p d\f/ d<t> d\// 
0i(*,^) = ; 

ds dsf ds' ds 
and 

* The cases of the sphere and the plane are excluded. 
f Geometrically: we may fix the positive direction on the lines of curva­

tures of one family; then that for the other family is determined. 
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V d(j> V d<t> 
(56) A20 = - — + — — • 

Vs ds Vs ds 
To verify these equations, we have merely to expand the 

right-hand sides, and recall that 

E = A2 + A'\ F = AB + A'B', G = B2 + B'\ 

We are now in a position to develop on 5 the theory which 
is linked with the ideas of gradient, divergence, and curl, and 
to express it in an analytic form which is strikingly similar to 
that in the Cartesian plane. Let F be a vector which is defined 
at each point of S, and let the components of V with respect 
to £ and £' be Q(u, v) and Q'(u, v), 

The divergence and curl of the vector V shall be defined as the 
expressions : 

VQ V<2' 
d i v F = — + —L> 

Vs Vs' 
(57) 

v<2' vQ 
curl V = —- • 

vs vs 
In justification of the definitions, we shall show that the 

expressions in question are invariant with respect to a trans­
formation from one orthogonal system to a second. Let the 
components of V with respect to the unit vectors £(1), £(2) in the 
directions of the lines of curvature be Qi and Qi\ 

V = Q^ + Q ^ . 
Using the formulas of transformation (48) of £(1), £(2) into 
£, £', we find 

Q = Qi cos a + Ö2 sin a, Q' = — Qi sin a + Q2 cos a, 

and hence deduce, by means of the transformation (52) of the 
modified directional derivatives, the desired relations: 

Vs Vs' V$i Vs2 

v # _ vc = vç2__ vöi 
Vs Vs' Vsi VS2 
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The expressions (57) are the inner and outer products* 
of the vector operator 

V A 
A = £ _ + £ ' — 

Vs Vs' 

with the vector V. This operator is, then, a generalization of 
the vector operator in the plane which is denoted by the same 
symbol. 

Another vector operator suggests itself, namely, 

d d 

ds ds' 

and this operator, too, is of value. In fact, if 0(w, v) is a scalar 
function, the vector 

dcj) d<j) 
£ * = —È + T-/*' ds ds' 

is the gradient of </>. 

The operator D, based on ordinary directional derivatives, 
applies to functions and yields vectors,—their gradients. The 
operator V, based on the modified directional derivatives, applies 
to vectors and yields functions,—their curls and divergence. 

This result sets forth clearly the significance of the modified 
derivatives and the relationship between them and the or­
dinary derivatives. 

Since D applies to functions and yields vectors, and V ap­
plies to vectors and yields functions, the two operators can be 
applied in turn as often as one desires. 

We can, for example, apply V to the gradient D</> of a func­
tion <j>, to find its divergence and curl. 

The divergence of the gradient of <j>(u, v) is the Laplacian 

div D(j> SE 1 
Vs ds Vs' ds' 

The curl of the gradient of c/>(u, v) is identically zero, 

* We assume hat we are dealing with two-dimensional vectors. Then 
the outer product, as well as the inner product, is a scalar. 
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V d<t> V dcj> 
curl Zty = = 0. 

Vs ds' Vs' ds 
Conversely, if the curl of a vector vanishes identically, the vector 
is the gradient of a function. 

These results are, of course, direct generalizations of classical 
theorems in the Cartesian plane. 

Since the gradients Defy, D\f/ of two invariant functions are 
invariant vectors, their inner and outer products are invariant 
functions. In fact, according to (55), these products are the 
differential parameters of the first order of 0, \j/ with respect 
to the linear element. On the other hand, the divergence of 
Dcf) is A20. 

All the differential parameters, with respect to the linear ele­
ment, of a given set of f unctions result from the operations of inner 
and outer multiplication, together with the operation of finding 
divergence, applied to the gradients of the given functions and all 
functions derived from them by these operations. 

The process of finding the divergence is simply that of inner 
multiplication by the operator V. Hence, we have reduced the 
operations necessary to obtain the differential parameters with 
respect to the linear element to ordinary inner and outer mul­
tiplication of two-dimensional vectors, supplemented by the 
two types of differentiation. 

17. The Geodesic Curvature Vector. The vector whose com­
ponents in the directions of the curves of an orthogonal sys­
tem to which the surface is referred are the geodesic curvatures 
of these curves shall be called the geodesic curvature vector 
associated with the orthogonal system. Thus, 

rc1c2 = - ? ( 1 ) + - ? ( 2 ) 

Pi P2 

is the geodesic curvature vector associated with the lines of 
curvature, and 

1 1 
TClc' = — £ + — É' 

P P 

is that associated with the general orthogonal system consisting 
of the curves C, C'. 
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These two geodesic curvature vectors are not, in general, 
the same. As a matter of fact, we have 

Tec' = rClc2 + Da, 

where Da is the gradient of the angle a under which the system 
of curves C, C' cuts the lines of curvature. 

On the other hand, since the curl of the gradient of a func­
tion vanishes, 

curl Tec = curl TClc2. 

The common value of these curls is, by (40), the negative of 
the total curvature of the surface. 

The curl of the geodesic curvature vector is the same for every 
orthogonal system of curves, and is equal to the negative of the total 
curvature of the surface. 

It follows that a surface is a developable if and only if an 
arbitrarily chosen geodesic curvature vector is the gradient of a 
function. 
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