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SOME PROPERTIES OF SPHERICAL HARMONICS* 

BY H. BATEMAN 

A Newtonian potential V(x, y, z) can often be derived from 
a four-dimensional potential W(x, y, z, w) by forming the 
definite integral 

1 r» 
V = — Wdw. 

Thus, if W is the reciprocal of (x — x0)
2 + (y — yo)2+(z — z0)

2 

+ (w — Wo)2, where Xo, yo> z0, w0 are real constants, the Newtonian 
potential V is the inverse of the distance between the points 
(x, y, z) and (x0, 3>o> So). There is thus a simple correspondence 
between the charges giving rise to the two potentials, the 
point charge in the three-dimensional space, S3, being simply 
the projection of the corresponding point charge in the four-
dimensional space S^ With suitable restrictions this method of 
projection may be applied to surface distributions of charge in 
S4 and we shall consider in particular the case of a continuous 
distribution over the spherical surface 

x2 -{- y2 -\- w2 — a2, z = 0, 

when the surface density depends only on x2-\-y2. In this case 

I (a2/R2)f (cos 6) sin Bd6d<j>, 
0 J 0 

where /(cos 6) is the function giving the law of density and 

R*=(w — acosd)2 + z2 + (x — asind coscj))2 + (y — asin0sin0)2. 

To reduce the integral to a simpler form we write 

cos 6 = f, x2 + y2 = p2, p2 +w2 = r2 ; 

then 
W = (Tra/r)U{X,Y,Z), 

where 

Presented to the Society, June 20, 1929. 



i93°-J SPHERICAL HARMONICS 307 

U = ƒ [(f - Z)2 + X2 + Y*]-u*f(X)dÇ, 

Z = ws2/(2ar2), X2 + F2 + Z2 = 0 4 - 4a2p2)/(4aV), 

s2 — x2 _|_ y2 _[_ 22 _J_ w 2 _[_ a 2 # 

Now, when (X, F, Z) are regarded as rectangular coordinates 
in a new space 53*, the function V is the Newtonian potential 
of a. rod of line density /(f) and so it is advantageous to intro­
duce spheroidal coordinates £, 77, of the prolate type, by means 
of the equations 

cos £ cosh rj = Z = 2e's2/(2ar2) ; 

sin^sinhr? = (X2 + F2)1 '2 = p(s4 - 4a2r2)1/2/(2ar2) . 

We then find that 

cos £ = W/T, cosh rj = S 2 / (2#T) . 

If Pn(p), Qn(<r) are the usual Legendre functions, the potential 

U = Qn(cosh ?7)Pn(cos £) 

gives rise to the four-dimensional potential 

W = 7r(a/r)Qn(sy(2ar))Pn(w/T). 

This is a particular case of the theorem that if H(x, y, w) is a 
homogeneous function of x, y, w of degree — n — 1 such that 

aw aw aw 
+ + = 0, 

dx2 dy2 dw2 

and T is a function of z and r satisfying 

a2r in er d2r 
(!) + = 0 , 

dr2 r dr dz2 

the product W = HTis a four-dimensional potential. I t should 
be noted that the equation (1) is satisfied by rnPn{s2/{2ar)) and 
rnQn(s

2/(2ar)). To ascertain the nature of the function V 
derived from W we note that when p = 0 the potential F becomes 
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C ™dw /z2 + a2+ w2\ a f °° Çl 2aPn(ij)dfx 
a I On ( 1 = I dw \ 

J-oo w \ law / 2 */_«, J-i z2 + a2 + w2 — 2afjLW 

-a'Cerf ^ ^ 
J_ i J - * (w - a»)2 + a2(l - M2) + z2 

= aV ƒ [s2 + a2(l - M2)]-1 / 2PnW^ 

= 2airCm ' q2m( \ z | /a), (» = 2m), 

= 0, (n = 2m + 1), 

1-3 ( 2 w - l ) 

r = 

where 

2-4 (2m) 
and where 

Tl'2T(2m + 1) 

*2w* ' 2a«H-1r(2m + 3/2) 

/ 1 1 3 1 \ 

V 2 2 2 1 + W 

is the type of Legendre function used for the standard harmonics 
associated with an oblate spheroid, the notation being that used 
in Lamb's Hydrodynamics, 5th edition, p. 124. The change of 
the order of integration in the repeated integral in the above 
analysis is easily justified when z2>e2>0 because Weierstrass' 
test may be used to establish the uniform convergence of the 
infinite integral in the range — 1 ^ju = !• 

The function V is the potential of a circular disc charged with 
a surface density [a2/(a2-p2)]ll2P2m[(l-p2/a2)1f2]y the charges 
on the two sides being equal. By introducing the spheroidal 
coordinates cr, /x, defined by the equations 

z = a»<r, p = a [ ( l - M 2 ) ( l + <r2)]1/2, 

the potential V may be expanded in a unique manner in a 
series of spheroidal harmonics of type -4nPn(/z)gn(<r); and by 
putting fx = 1 it is easily seen that V is identical with the 
harmonic 2axCmP2m(M)<Z2m(ö\)- Hence 

J
00 dw 

— Q2m(s2/(2ar))P2m(w/T) = 2<KCmP2m{n)q2m{a^. 
_~ r 
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This is a relation between spheroidal harmonics of the prolate 
and oblate types. 

On the disc we have cr = 0, and since 2q2m(0) =TCm, the value 
of F i s 

Vo = ir2aCm
2P2m(ii) • 

Another relation, which is obtained by the method of projection 
from S*, may be mentioned here. If r2 = x2+y2+z2, p2 = x2+y2, 

, 1 r °° dw (z2 + w2 - p2\ / x\ 
(3) _ pi ) = Cnr~2^pJ — J • 

T J^ (r2 + w2)n+l \z2 + w2 + pV \r) 
If w = r tan e, it is easily seen that the integral is of the form 
r~2n~1F(z/r), where F(v) is a polynomial. Since the integral 
represents a Newtonian potential, F(y) must be a constant 
multiple of P2nW and the constant multiplier may be identified 
with Cn by putting p = 0 . 

The associated relation 
1 /• °° dw /z2 + w2 - p2\ / z\ 

7T J ^ (r2 + w*)"*1 \z2 + w2 + p2/ \rj 

is more difficult to prove. The integral may be shown by 
differentiation to be a Newtonian potential and the substitution 
w = r tan e indicates that it is of the form r~2n~1[AnQ2n(z/r) 
+BnP2n(z/r)], where^4n and Bn are constants to be determined. 
Now Ç2n(0) =0 , P2n(0) = ( - 1 ) - C n , hence Bn = 0 if 

T00 dw (w2 - p2\ 
(5) Qn ( — ) = 0. 

J «oo (p2 + W2)n+l \W2 + p 2 / 
To establish this relation we make use of the expansion 

00 

(6) Z*"G»W = (1 - 2vA + h^-^sinh-1 [(v - A)(l - **)-»/«] 

I A| < 1, ( - 1 < v < 1), 

which is readily derived from the formula* defining Qn{v), 
namely, 

rn+i \ r / 2^-^! a 2 n \ 2 f r-z/ 

* E. W. Hobson, Proceedings of the London Mathematical Society, (1), 
vol. 22 (1891), p. 438. (This reference was given to me by G. N. Watson.) 
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The expansion indicates that Qn[(w2 —p2)/(w2+p2)] can be 
regarded as an odd function of w and so the truth of (5) becomes 
manifest. To determine the value of A n we shall first obtain 
another integral for the same Newtonian potential by making 
use of the fact that if the function W=F(x, y} z2 — t2) is a 
solution of the wave-equation 

d2W d2W d2W d2W 

dx2 dy2 dz2 dt2 

the integral 
i rt+z 

V = — I F[x,y,z2 - (/ - r)2]dr 
2 J t-z 

is in many cases a solution of Laplace's equation. Instead of 
enumerating a set of sufficient conditions to be satisfied by F 
we shall simply remark that the conditions (indicated by the 
differentiations under the integral sign) are evidently satisfied 
in the present case (when n is a positive integer) because the 
integrand in the integral now to be considered is a polynomial : 

(8) 
1 Ct+Z r ï TP2 - s2 + (f - r)2l 

2 J t-z Lp2 + z2 - (t - r)2A Lp2 + z2 - (t - r)2 

(-~iyCnr-2n-1Q2n(z/r) . 

The integral evidently represents a function of type r~2n~1F(z/r) 
and is zero when z = 0, consequently it represents a constant 
multiple of r^^^niz/r). The constant multiplier may be 
determined by differentiating with respect to z and making use 
of the relation 

e'2n(o) = ( - iy/cn. 
This may be proved by differentiating the relation (5) with 
respect to z and then putting z = 0 and using the expansion 

(9) A(l + h2)~^2 sinh-1 h - 1/(1 + h2) = £ ( - l ) n + 1 ^ n /C n . 
n=0 

Multiplying the relation (4) by a2n and summing from n = 0 to 
n = oo , we obtain the relation 

( 1 0 ) f Tl ? • 2 < m / 2 = S( -1)"C.(« '"A 8 " + 1 )Q«.(«A) , 
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where r? = (p+a)2+z2, r2
2 = (p — a)2+z2, and r2 sin <t>=z. This 

relation holds for p ^ a . 
Calling the potential function on the left of (10) v, we note 

that if (4) is correct, there must be a relation of type 

1 r °° _ 
v = — I dw[a4 + 2a V + w2 - p2) 

Fa2 + z2 + w2 

+ 0 2 + w2)2 -1 '2 sinh"1 

L 2p(s2 + w2)1 

To test this relation we first put p = a. I t then becomes 

*i2 de 

)!/. J ' P ^ tf. 

ƒ. o (4a2 + ^cos2*?)1 '2 

1 f00 dw r(22 + w2)1/2l 
= — 7 7— sinh"1 — . 

v J-„ [(s2 + w2)(*2 + w2 + 4a2)]1/2 L 2a J 
This relation may be checked by expansion in powers of 1/a, 
making use of the expansion 

r ( 2 2 + w 2 ) i / 2 - | 
(11) (z2 + w2 + 4a2)"1/2 sinh"1 — 

« ( - l ) n (22+ w 2)n+l /2 

w=o (2« + 1)C» (2a)2«+2 

This will serve as an outline of a method by which the relation 
(4) may be established. 

It should be noticed that by making use of (7) the series on 
the right of (10) may be expressed in the form 

(12) v = Joïa-f] \ ~ log ^ t i l , 
L dzj {2r r - z) 

and, since* 

1 r + z ir f °° 
(13) — log = - — I 6-*«Fo(*p)rf*, 

2r r — z 2 J $ 
the last expression may be replaced by a definite integral. The 
appropriate formula is 

* Watson, Bessel Functions, p. 387. 
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(14) 

1 f00 

v = T I e-kzJo(ka)Y0(kp)dk, (p > a > 0), 
2 */ o 
1 /•" 

» = T I e-kzY0(ka)Jo(kp)dk, (a > p > 0). 
2 •/ o 

G. N. Watson has kindly mentioned that the function v is also 
expressible in the forms 

1 C °° C r 

v= I dk \ e-k*Y0(kR)d<t> 
2 J n «/n (15) 1 

= I d<t> I e-kzY0(kR)dk, (R2 = p2 + a2 - 2pa cos </>), 
2 «/ o ^ o 

the repeated integral being absolutely convergent. 
Formula (14) is easily checked by noticing that v is a sym­

metric function of p and a and that a correct result is obtained 
by putting p = 0. That the result is also correct for p=a is 
seen by making use of the well known formula* 

2 f °° 
(16) Jo(ka)Yo(ka) = I Jo(2ka cosh u)du. 

7T Jo 

The equation then becomes 

/» 00 /» 00 

I (4a2 + cos2 tf)-1'2^ = I (z2 + 4a2 cosh2 u)~^2du. 
J o «J o 

if we first put p =a in t; and then make 3 = 0 the result is w/(ia) 
but if we first put 3 = 0 and then make p—>a the result is zero, 
a result which is in agreement with the fact that v is an odd 
function of z. 

I t is interesting to note that 

ƒ 00 

Jo(\a)Y0(\p)d\ = 0, (p > a > 0), 

= - l / (2a) , (p = a > 0). 

The value of the integral for p<a has been obtained for me by 
G.N.Watson . When 0 < p < a it is 

* N. Nielsen, Handbuch der Theorie der Cylinder Funktionen, p. 215. 
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- H-) 
wa \ a / 

where K and iKf are the quarter periods of elliptic functions 
of modulus k. It should be observed that 

/» 00 

(18) lim I J0(\a)Y0(\p)d\ = - 1/a. 
p-+a-0 J 0 

When p < 0 , a > 0 , p = c r ^ (d>0) , F0(Xp) = F0(Xa-)+2i/0(Xo-), 
the value is 

2 
2T 

Tra - ( - ) + - ' ( - ) 
\ a / 7ra \ a / 

for (7<a and [4i/(xo-)]i^(^/c7) for a>a. When a — a the integral 
is divergent. 

Watson remarks that a combination of (15) with (13) gives 
the simple formula 

(19) 
1 f" d<j> r' + z 

= - - l o g - > ( / 2 = 22 + i22)-
Z7T J o r r — z 

Two other simple expressions for v may be obtained by using the 
known formula* 

2 f00 

(20) F0(#) = I cos (x cosh u)du, (x > 0). 
7T » / 0 

The result is that 

du[(z + ip cosh ^) 2 + a2]~1 /2 , (p ^ a) , 

du[(z + ia cosh w)2 + p2]~1 /2 , (p ^ fl). 

(21) v = real part of < 

ƒ' 

ƒ 

Here v is the potential corresponding to a surface density pro­
portional to l/(az) on the cylinder p=a. The discontinuity in 
the surface density at the plane z = 0 is responsible for the dis­
continuity in v. We have actually 

* When p > a > 0 the result is easily deduced from Nielsen's formula (12) 
on p. 193 of his book. 
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(22) 
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l KP, 

[dv/dp]p=a+o — [dz/dp]p==a-o = — 1/(0*), 

«)]p-a,*-fO - [w(P>*)]p-a,*—-0 = 7 r / ( 2 â 0 • 

The behavior of the potential would be precisely the same if the 
surface density proportional to l/(az) were distributed on the 
sphere r — a instead of the cylinder p=a. The potential in this 
case can be expressed in the forms 

(23) 

vi = ]C 
( - 1 ) " r 2w+l 

0 (In + l )C n <*2w+2 2n+l Wr), 

Vl = X 
( - 1 ) " 7 2n+l 

" 0 (2» + 1)C» r*-+* 
•P2n+l(zA) > 

( r ^ a ) , 

( r è a) . 

For c g a w e have, indeed, i>i = ». This may be seen by making 
use of the relation 

(24) 
1 rt+z r 

— I ^r [ r 2 - (/ - r ) 2 ] » P „ r 
2 •/ t~Z L 

• *2 + (t - r)2 

p2 + z2 - (t - r)2J 

"<> + i)c7 !w.(f), 
which is proved* in the same way as (8) when use is made of the 
relation 

(25) P2n+l(0) = ( - l)»/[(2» + l)Cn] . 

CALIFORNIA INSTITUTE OF TECHNOLOGY 

* Watson, Bessel Functions, p. 180. 


