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In the book which accompanies the stencils various 
methods of finding quadratic residues are discussed and the 
method by means of the expansion of the square root of the 
number in a continued fraction is found to be by far the most 
effective. Various examples are given illustrating the power 
of the stencils, and a reproduction of the first page of the list 
of primes accompanies the work. 

The plan of the stencils was first conceived in November 
1924 and has been carried on since then under grants from 
the Carnegie Institution of Washington. Plans for the dis­
tribution of the sets are not yet completed, but every effort 
will be made to place them where they will be of most use. 

T H E UNIVERSITY OF CALIFORNIA 

ON A PROBLEM IN T H E THEORY OF GROUPS 
ARISING IN T H E FOUNDATIONS OF 

INFINITESIMAL GEOMETRY* 

BY H. P. ROBERTSON AND H. WEYL 

In another paper in this issue, f the fundamental problem of 
infinitesimal geometry is formulated as the problem of 
uniquely associating with an arbitrary coordinate system on 
the manifold M a normal coordinate system on the tangent 
plane 7p by means of the fundamental coefficients of dis­
placement on M. 

The importance of the other aspect of this problem 
raised by O. Veblen and H. P. Robertson, yet remains: to 
associate a transformation of the given group & with an 
arbitrary tranformation of the coordinates x in such a way 
that it gives rise to a representation by ®, that is, that to 
composition of arbitrary transformations of x corresponds 
composition of the associated transformations of ©. From 

* Presented to the Society, June 21, 1929. 
t This issue, pp. 716-725. 
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this standpoint the problem is a pure group-theoretic one 
which is not at all concerned with a "connection" on M. We 
consider in the following the projective group as an example. 

More precisely, the problem is the following. Take the 
point P under consideration as the origin of coordinates, that 
is, consider the relative coordinates Xjc Xo , where P = P(x0). 
An arbitrary transformation of these relative coordinates x* 
has the form 

(1) s: x{ = aûxh + \a\ixhxl + • • • . 

The associated w-dimensional projective transformation cr, 
which shall also leave the origin fixed, is expressed in homo­
geneous coordinates rj in accordance with the normalization 
(4) of the paper mentioned above. We take as coefficients aé 
of a the coefficients a\ of (1) ; the coefficients a& are then to be 
determined. The condition imposed is that the association 
s—xr shall yield a representation. We may add the additional 
condition that a depend only on the coefficients ai and a\x of 
5 of first and second orders. 

We are then naturally led to the problem of representing 
the group © of all transformations by linear transformations, 
whereby the accessory condition that the transformation 
corresponding to 5 shall depend on the terms of the first two 
or first three orders etc. may be imposed. This problem is to 
be attacked as follows. We first restrict ourselves to the sub­
group ©0 of © consisting of linear transformations 

xl = ai xk. 

We know the representations of @0 and we shall assume tha t 
the given representation s—xr of © by ^-dimensional matrices 
a decomposes into known irreducible representations when 
considered as a representation of @0 (that is certainly the 
case when we restrict ourselves to the unimodular transfor­
mations of ©0; we take it to be the case for the full linear 
group for the sake of simplicity). Let these irreducible con­
stituents be of orders 0, 0', • - , respectively; i.e. to the 
infinitesimal dilatation dx{ = x{ correspond the dilatations 
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d^l=o^y d£6=o'£ l, • • • , respectively in these representations. 
(It follows from the general theory that in an irreducible 
representation a dilatation must correspond to a dilatation in 
the original group.) 

Furthermore, we employ Lie's infinitesimal method. To 
an infinitesimal transformation 5 

1 * 
(2) dxl = ai xk -\ dkixkxl 

corresponds an infinitesimal transformation 

(3) d£ = a^« 

of the given representation. But the ai are now linear 
homogeneous functions of the ak\ a{h • • • . The condition 
that cr be a representation requires in addition that to the 
commutator of two transformations s corresponds the com­
mutator of the corresponding transformations £. We con­
sider in particular the two transformations 

1 
(4) s: dxl = —aki

lxkx l + • • • and C: d'x1 = ci xk. 

If the matrices of the corresponding <J (3) be A and I \ the 
infinitesimal a with matrix AI1 — TA shall correspond to the 
commutator of (4). We proceed in three steps, by first 
taking as C the dilatation 

d'x1 = x\ that is, ci = bk\ 

then the more general linear "principal transformation" 
d'xi=\ix

i (not summed!) with arbitrary A;, and finally the 
unrestricted C. 

The commutator of (2) and the dilatation is obtained by 
multiplying the term of nth degree in (2) by (n— 1). The 
set of variables £l is divided into subsets the members of 
which are transformed among themselves under T, and in 
particular are only multiplied by 0, o' etc. by the transforma­
tion r=r<2 which corresponds to the dilatation. The rect­
angle [A] of the matrix A, in which the set 0 intersects the 
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set o'', is multiplied by o' — o on going over to AI^ — T^A 
from A. The aK

l in this rectangle must consequently be 
multiplied by o' — o when the a£, a\h etc. are replaced by 
0-aé, 1-fljw etc. Consequently if o' — o is not a whole num­
ber, 0, 1, 2, • • • , [A] must vanish identically, and if 
0' — o = n—l, [A] can depend only on the terms of order n 
in (2). In particular the square [A] of A in which the set 
0 intersects itself can only depend on the a£. 

We can choose the coordinates in representation space in 
such a way that to the principal transformations dxi=\i%i 

correspond principal transformations £l-^At£'; the "weights" 
At are linear forms in the X*-. In the commutator of (2) with 
this principal transformation a\i is replaced by 

ali...(\k + Xz + • • • — Xi) 

while the corresponding process for the a changes a / into 
aK

l(AK — A t). Consequently the aK
l can depend only on those 

a\i • • • for which X&+Xz + • • • —X; is identical with A*—At. 
Equivalent representations, which differ only in the choice 

of the coordinate system in which they are expressed, shall 
naturally be considered as the same. But as soon as the 
irreducible representations into which the given representa­
tion of ©0 is decomposed is fixed the coordinate system is 
fixed except for multiplication of the variables of each subset 
by a non-vanishing arbitrary constant. 

Let us return to the case considered above, in which 
N = n+1 and the (w+l)-dimensional representation of ®0 is 
decomposed into the ^-dimensional s—>s and the one-dimen­
sional which associates the identity £° = £° with every s. Here 
o = 1, 0' = 0; we must consequently have in (3) 

a** = ak\ a0° = 1, a0*' = 0, 

and a£ depends only on the terms a*s of second order. 
Furthermore, a$ must be linear form in those a*s only for 
which Xr+Xs—Xi = Xfc. We must therefore have 

Oik — AjHikdiJc 



690 H. P. ROBERTSON AND HERMANN WEYL [Sept.-Oct, 

where the Hik are constants independent of 5. In order to 
determine the Hik we now consider the commutator of 

dxi = %alixkxl and d'x* = Ck{xk 

and obtain 

^2Hik(ar
%kCir + dirCkr ~ OikCr1) = ^CkEirOlr 

i,r i,r 
or { r 

2^ark(Hik — Hrk)Cir = j^bkiHir — Hik)aiT. 
i,r i,r 

Equating the coefficients of dk on both sides for i^k we see 
that Hik=Hkk\ Hik does not depend on i and can be written 
Hk. The equation then reduces to 

J^(Hr - Hk)cl = 0 

which tells us that Hk is independent of k, Hk = H. Hence 

oik = H / Aik. 
i 

When H9^0 we can multiply the variable £° by an appropri­
ate constant in such a way that in this new coordinate 
system 

1 
H = 

n+ 1 
We thus find that there are two distinct possibilities: (1) 
ak° = 0 or the affine tangent plane, (2) the one obtained by 
Robertson and, from another standpoint, in the paper by 
H. Weyl on pages 716-725 of this issue, that is, the semi-
osculating projective plane. 
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