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T H E PROBLEM OF T H E CUBIC VARIETY IN 54* 

BY VIRGIL SNYDER 

1. Introduction, One of the outstanding problems of alge­
braic geometry that is still unsolved is the classification of 
Cremona transformations in space of more than two dimen­
sions, and another, closely related to the preceding, is that 
of possible series of composition. 

The theorem of Noether (80), later clarified and inter­
preted by Segre (90), Castelnuovo (14), Chisini (17), and 
Alexander (1), has answered the latter problem for the plane; 
while a large number of papers, represented in particular by 
the recent work of Hudson (67), Mlodzieioski (73)—(76), 
and Montesano (79), have made the construction of tables 
a definite procedure. 

The smaller problem of the involutorial transformations 
has been completely solved by Noether (81), Bertini (6), 
and others, thus furnishing a weapon of incalculable im­
portance for the study of various applications. Periodic 
transformations and their groups have been studied from 
various points of view by Kantor (69)-(70), Wiman (112), 
and Coble (20)-(21). 

The corresponding problem in space is still almost un­
developed. Notwithstanding the excellent report made by 
Coble (22), the less ambitious one by me (103), the ap­
pearance of the extensive treatise by Hudson (67), and the 
Report of a committee of the National Research Council 
(106), I wish to speak of one phase of the latter problem. 
For regular transformations in space of three dimensions, 
the important theorem of Hudson (66) and a recent memoir 
of Montesano (78) are distinct steps in advance. When the 
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defining elements are chosen independently, without contact 
conditions, the table of characteristics for a Cremona trans­
formation and for its inverse has been completely con­
structed. 

I wish to confine my attention, however, to the part taken 
by the cubic variety of four-way space Si in the study of 
involutorial birational transformations of S3. 

The study of the involution defined by the web of quadrics 
through six points leads at once to the Weddle surface, the 
locus of the vertex of the quadric cones through the six 
points, as surface of coincident points. If the quadrics of the 
web be made projective with the planes of another space 
S3 , a (1, 2) correspondence is established, and the Kummer 
surface appears as surface of branch points in Si. All the 
properties of the general transformation and of all particulari-
zations can be made from this point of view. This study of 
(1, 2) correspondences is an extension of that initiated by 
De Paolis (27) for 53, and applied to double planes by En-
riques (32) and by Castelnuovo and Enriques (15), thus con­
firming the result obtained by Noether (81) concerning the 
number of plane involutions of order two. 

But the Kummer surface is the apparent contour of the 
cubic variety with ten nodes, as has been shown by Segre 
and further developed by Hudson (68) and by Snyder (101). 
Moreover, the same surface also appears in a similar rôle in 
connection with involutions defined by webs of cubic and of 
certain quartic surfaces. See Sharpe and Snyder (100). 

In the same way, the quartic surface with less than sixteen 
nodes, birationally equivalent to the focal surface of line 
congruences of order two and class 3, 4, 5, 6 appear as sur­
faces of branch points of certain involutions, and each is the 
apparent contour of a cubic variety with one or more actual 
double points. Thus, to a point on the cubic variety cor­
respond a pair of points in 53, each point of which uniquely 
determines the other. These pairs of points determine an 
involution belonging to Vs. 
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2. Rational Involutions, Given an algebraic curve C in Sn, 
a necessary and sufficient condition that C is rational is 
that its points can be put into (1,1) continuous correspon­
dence with those of a straight line. (Definition.) 

If pXi=fi(yi, y2)> (i = 0, 1, • • • , n), define the coordinates 
(x) of a point on C(x) and yu y2 those of the image point on 
the line, then ƒ» is a rational integral polynomial homogeneous 
in 3>i, y2. 

If several sets of values of yi, y2 define the same variable 
point (x), then functions yi = <t>i(yi, yi), yi^fatyi, yi) can 
be found such that the relation between (y') and (x) is (1, 1). 
This is expressed by saying that every involution on a rational 
curve is rational. (Theorem of Lüroth (71)). 

Similarly, given an algebraic surface F(x) in Sn, such that 
pxi=/ i ( j i , 3>2, 3*3), wherein each ƒ* is a rational integral form 
of the same degree in (x), then F(x) is rational. If several 
sets of values of (y) define the same variable (x), then 
functions yi = (j>i(yi , yi, yi) can be found such that the re­
lation between (y') and (x) is (1, 1). Hence every involution 
on a rational surface or in particular on a plane, is rational. 
(Theorem of Castelnuovo (11).) The theorem for involu­
tions of order two was already known. See Noether (81) 
and Bertini (6). More recent contributions to the classifi­
cation of plane involutions of order higher than two have 
been made by Howe (65), Hollcroft (64), and Sharpe (99). 

Given a three-dimensional manifold Ms(x) and p#» 
~fi(yi> 3>2, 3>3, 3*4) a parametric representation, wherein ƒ»• is 
a rational integral form, we cannot conclude whether M$ is 
rational or not. The condition is necessary but it is not suffi­
cient. If various sets of values (y) define the same variable 
set (x), it may not be possible to find a set of functions 
yi~<t>i(yi , 3>2;, yi, y*) such that the relation between (x) on 
Mz{x) and (y') in Si is (1 ,1) . (Theorem of Enriques (36).) 

Illustrations have been given of irrational involutions in 
53 belonging to a three-dimensional variety; others were 
furnished by Aprile (2) but all are of order larger than two. 
No illustrations have been found of three-dimensional in-
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volutions of order two that are known to be irrational. 
In particular, it is not known whether the points of the 

general cubic variety Vz in Sé can be put into (1 ,1) corre­
spondence with those of £3. 

I t is known that an involution of order two in S3 belongs to 
it. The existence of this involution was known to Noether, 
and later proved by Segre (89) and by Marietta (72). The 
actual form of the parametric represention is 

pxi = yi2(2yx
z yzy± + Ay3 + ByO, 

px2 = yiy2( " ) , 

px3=-y3
2( " ) , 

pxi = yiiyfyzy*2 + Byxyi — Cy3), 

pxs = — yi{yi y? + Ayxy± + CyO, 

V3 = X1X4? + xzx$2 + axt + bx& + C= 0, 

a = a0xz2 + d!Xz + a2, A = a0^3
4 - a^yi + a2yi2, 

b = b0xz2 + bixz + b2, B = b0yz* — bxyz2yi + b2yx
2, 

c = cixz2 + c2xz + cz, C = dyzA - c2y3
2yi + c3yi2, 

where (iif bi) Ci a r e binary forms of order i in X\ and x2. 
This form of order 7 is the simplest one consistent with a 

quadratic locus of invariant points. This result was obtained 
and the associated involution of order 6 is described by 
Snyder (104). 

3. Involutions Belonging Multiply to a Line Complex. 
Every Vz contains <*>2 straight lines. See Enriques (28) and 
Fano (57)—(58). Let / be a line on F3, and P any point on F3. 

The plane (P, /) meets Vz in a residual conic through P 
which meets / in two points Zi, Z2. The line PZi is tangent 
to Vz at Zi. Conversely, any line tangent to Vz at a point Z 
on I meets Vz again in a point P. 

Between the points P of Vz and the tangents at points on 
/ there is therefore a (1, 2) correspondence. These tangent 
lines form a special linear line complex which can be mapped 
birationally on the points of an 53 . The lines joining a pair of 
associated points PP' in 53 always meet the rectilinear image 
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of /; hence they define a special linear complex. But every 
line of the complex contains two pairs of associated points. 
(Snyder (104).) 

Other I2 in .S3 exist which are contained multiply in a 
rational complex. The simplest one is obtained by con­
structing a (1, k) correspondence between a pair of lines on a 
regulus and the quadrics of a pencil. A point P of Sz de­
termines a quadric passing through it, and hence a pair of 
directrices (d, d') of the regulus. The transversal of (d, d') 
through P meets the quadric in P ' . The line PP' contains k 
pairs of associated points, and belongs to a general linear 
complex. (Snyder (107).) 

Consider a line / and a pencil of surfaces of order n having 
the line to multip3,city n — 2. Make the same (1, k) corre­
spondence between the points of the line and the surfaces of 
the pencil. The line may be replaced by a conic provided 
the surface is of ordei less than 5, or by a space cubic. 

A pencil of quadrics and a rational curve of any order may 
be taken. Similarly, a linear system consisting of a line and 
of a rational curve of order m meeting it in m — 1 points may 
be put in (1, k) correspondence with the quadrics of a pencil. 
Either the line or the curve may remain fixed. The system 
may be replaced by a pencil of cubic curves as directrices. 
All of these forms contain types which belong to the cubic 
variety as particular cases. Incidentally they all possess 
properties not shared by ether involutions heretofore known. 

Another illustration is hat of order 7 found by Montesano 
(77). Given five linear jine complexes Ki and a projective 
form q or g of five elemeiit 3. An arbitrary plane ir of space has 
five poles Oi as to Kif a n i in it is one point 0' such that the 
lines O'Oi 7\g. There is one and only one complex K in in­
volution with every K{. The plane ir has a pole O as to K. 
The relation between 0, 0 ' is birational and involutorial. 

The line 00' describes a linear complex K and every line 
of K contains three pairs of conjugate points. There is no 
surface of invariant points, but a curve of order 8 and genus 
5, birationally equivalent to the only fundamental curve of 
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the system, apart from parasitic lines. It is not known 
whether this involution belongs to the cubic variety or not. 
Its properties are different from those of the other types just 
mentioned. 

In particular, if the set of complexes be considered, such 
that each new one is in involution with five of the given ones 
(Kiy K), and the corresponding transformation be con­
sidered, the rôles of the fundamental curve and of the curve 
of invariant points will be interchanged. The scheme really 
furnishes <*>2 pairs of such complementary involutions, corre­
sponding to the oo2 possible values of g. 

4. Infinite Discontinuous Groups. Various infinite dis­
continuous groups which belong to Vz exist. We shall 
consider six distinct generating operations numbered (a), 
(b), (c), (d), (e), (f) below. It has not been shown whether 
others also exist. 

(a). The projection of Vz upon itself from a vertex A upon it. 
The product AB of two such projections is not periodic, nor 
can it be replaced by another product. Similarly for the 
product of three or more such projections. 

The projection A is Cremonian, and quadratic. An 53 

is transformed into a quadric variety having the polar 
quadric of A for locus of invariant points. The hyperplanar 
sections of Vz are transformed into sextic surfaces all passing 
through the six lines of Vz which pass through A. These 
lines have the property that the image of a point on any one 
of them is the whole line passing through it. 

In the product AB the Sz sections of Vz are transformed 
into surfaces of order 12, having six double basis lines through 
By and six conies, all lying on a quartic surface, through an­
other point, the image of A in the operation B. Similarly 
for products of more projections A, B, C • • • . (Snyder 
(102).) 

(b). Let I be a fixed line on Vz- A point P of Vz and I de­
termine a plane which meets Vz in a residual conic passing 
through P. 
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The line I has a pole L as to this conic. The harmonic 
homology defined by L and / leaves the conic, and hence 
also F3, invariant. The transformation is Cremonian, of 
order 8. The conjugate of an S3 contains / to multiplicity 7. 
The locus of invariant points is a variety of order 5, contain­
ing / to multiplicity 4. The image of / itself is a variety of 
order 7, containing I to multiplicity 6. Every S3 through / 
is transformed into itself. 

There are 002 lines on F3, each of which has an associated 
involution (b). The product of two such involutions, asso­
ciated with different lines, is not periodic, nor can one such 
product be replaced by another when the lines are taken 
arbitrarily. 

The product of a transformation of the type (a) and a 
transformation of the type (b) is in general not periodic. 
(Snyder (102).) 

(c). Consider a pencil of S3 having T: (ax)=0> (bx)=0 
for basef and the line l^Xi = X2 = Xz = 0 on F3. Make the 
points of the line and the hyperplanes of the pencil pro­
jective, by associating each S3 with the point P in which 
it meets /. Project the cubic surface S3, V into itself from P . 
The transformation is Cremonian, of order 4, the funda­
mental elements are / taken simply, and the basis plane 
taken twice. The locus of invariant points is a cubic variety 
containing /, T each simply. 

A transformation of this kind exists for every line / on V, 
and when / has been fixed, the basis plane may be chosen 
in 006 ways. The product of two or more transformations 
of this type is not periodic. The product of any transforma­
tion of type (c) with one of type (a) or of type (b) or any 
sequence of (a), (b), (c) is in general not periodic. 

The line I may be replaced by a conic, provided the basis 
plane has one point on it. The variety Vz contains <x>4 

conies. Moreover, a space cubic with two points on the 
basis plane or a rational quartic with all three basis points 
upon it, may be taken. The directrix curve appears as a 
basis curve with multiplicity equal to its order in every case. 
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(d). Assume an arbitrary fixed line m through a point M 
on Vz, but not lying on Vz. A point P of Vz and the line m 
determine a plane which meets F in a cubic curve through M. 
The first tangential Mr of M1 joined to P , meets Vz in P ' . 
The transformation P , P' is involutorial and Cremonian of 
order 8. The locus of M' is the surface of intersection of Vz 
and the three-dimensional tangent space at M, of order 3. 
Every plane through m is transformed into itself. The 
transformation in each such plane is quadratic, a perspective 
Jonquières type of the third kind. The fundamental line is 
the tangent to the cubic curve at M', and the locus of in­
variant points is the polar conic of M' as to the cubic. The 
images of the hyperplane sections \x\ of Vz are surfaces of 
order 24, |8x|, having M to multiplicity 6, and the six lines 
of V through M to multiplicity 2. They also contain the 
locus of the first tangential of M' as the plane describes the 
linear system through m. 

The product of two transformations of type (d) is not 
periodic. There are oo 3 points on Vz, and <*>9 directions m 
associated with each point. The properties of this trans­
formation should be further studied, both in 54 and in S3. 
Many of them are different from those of involutions hereto­
fore known. The product of a transformation of type (d) 
with any one of a preceding type or one derived from any 
combination of the preceding types is in general not periodic. 

(e). Let /, / ' be two skew lines on Vz and w a plane not meeting 
either. The plane is the basis of a pencil of S3. The Sz 
through a point P meets (/, l') in (K, K'). The line (K, K') 
meets V in M. The line PM meets Vz in P ' . The trans­
formation is involutorial, and consists in interchanging P 
and P ' . The locus of M is a rational C4. The lines / and / ' 
lie in a space S3 which cuts Vz in a cubic surface P3 con­
taining / and V. The pencil (Sz) meets (/, V) in ranges pro­
jective with it, hence with each other, hence (K, K') describes 
a quadric surface H2 in S3, through (/, / ' ) . The residual 
intersection of P3 and H2 is a rational CA which meets (/, /') 
each in three points. 
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Either or both lines may be replaced by conies skew to 
each other, provided IT meets each conic in one point, or 
one may be replaced by a cubic with two points on ir, 
with the other directrix either a line skew to w or a conic with 
one point on 7r. When both directrices are cubics, they must 
have a common point on T. Corresponding forms exist in a 
three-way space which leave a given cubic surface invariant, 
each of which presents interesting configurations of funda­
mental elements. 

(f). Another transformation is the following. Given a 
line I on Vz and a plane TT of SA, skew to I. 

The points O of TV and the planes through I are projective, 
and perspective. The plane through I meets Vz in a residual 
conic. Consider the harmonic homology having 0 for center 
and its pole as to the conic in its associated plane for axis. 
This procedure defines an involutorial birational trans­
formation which leaves each conic of / in a plane through / 
invariant, and hence transforms Vz into itself. 

I t is Cremonian. The line I and the plane cubic curve sec­
tion of Vz by 7T are the fundamental elements. The plane w 
may be replaced by any rational surface meeting an arbitrary 
plane through I in one point apart from those on I. 

5. Continuous Groups. A curve of genus zero belongs to a 
three-parameter group of continuous transformations. One 
of genus 1 has 001 transformations which do not form a group. 
If the genus exceeds unity, the curve belongs at most to a 
finite group. Surfaces invariant under 001 linear trans­
formations are rational or reducible to ruled surfaces. If 
they are invariant under 002 such transformations they are 
necessarily rational. (Fano (40).) Every algebraic surface, 
invariant under a transitive continuous group of linear trans­
formations, can be transformed birationally into a plane, or a 
quadric of 53, or into a rational cone normal in a certain 
Sm+i in such a manner that the group considered gives rise 
respectively to a group of plane homographies, or to a group 
of homographies in S3, or in Sm+i, each leaving the associated 
form invariant. (Fano (41) and (44).) 
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Every three-parameter linear group of 5 3 leaves a series 
of forms generated by planes invariant, none containing a 
simpler one. (Fano (40).) 

The three-dimensional varieties of Si invariant under <x>4 

continuous linear transformations are classified into five 
types, which do not include the general cubic variety. (Fano 
(43).) 

Surfaces invariant under a continuous group of Cremona 
transformations are all reducible to rational surfaces in S3 

invariant under linear transformations. (Fano (45).) 
Similarly for three-dimensional varieties. (Fano (46).) 

Given a homogeneous linear differential equation of order 
n. If a system of solutions yi, - - - , yn be regarded as pro­
jective coordinates of a point of Sn-i, the point will describe 
a rational curve when the coefficients in the given equation 
are rational functions of x. If the (y) satisfy one or more 
algebraic relations, the curve will lie on a corresponding 
number of varieties. The group of rationality of the equation 
leaves each variety of the system invariant. Finite groups of 
Cremona transformations in the plane, both according to the 
order and to the type, in the sense of Kantor and of Wiman 
have all been determined in this way. (Enriques and Fano 
(38).) The types of continuous groups in the plane are pro­
jective, quadratic and Jonquières, and in Sz contain these 
and two other <*>s types. The generalized Jonquières groups 
leave a pencil of planes or a bundle of lines (or both) in­
variant. (47). 

The imprimitive groups of continuous Cremona transfor­
mations in 53 belong as subcases in the types derived by 
Enriques (29) and Fano (46), (48). 

The complete enumeration of continuous Cremona trans­
formations in Sz can be made by starting from the generating 
infinitesimal transformation. This has been done and the 
preceding results confirmed. (49). 

A differential equation of the type in question is always 
solvable when more than one algebraic equation is identically 
satisfied by the solutions. (SO). 
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The group of rationality may leave a quadratic form in 
5n_i invariant. (52). For w = 6, this case can be interpreted 
in terms of lines of 53; instead of a curve, the locus is now a 
ruled surface. For n = 5, the same interpretation can be made 
by assuming a linear relation among six solutions. The ruled 
surface is then contained in a linear line complex. (51). If 
the discriminant of the quadratic form vanishes (special 
complex), the equation can be reduced to one of order 4. (54). 

Every Mz invariant under 003 projective transformations 
is rational. If the group is not integrable, the existence of 
001 rational surfaces on it insures its rationality. (53). 

These results have been collected and systematically 
developed by Fano (55). I t is shown tha t the existence of 
algebraic relations among the fundamental solutions of a 
linear differential equation is a necessary and sufficient 
condition for the vanishing of certain invariants belonging 
to the equation. 

On the general quartic three-dimensional variety V34 of £4, 
without double points, the system of hyperplane sections is 
the only linear system of regular surfaces with genera equal 
to unity and of dimension not less than 2. This variety is not 
invariant under any birational transformation, with the 
possible exception of linear ones. 

The M3
6 of 55, complete intersection of V42 and V£, does 

not contain such surfaces either. Every birational trans­
formation which leaves it invariant is the product of a finite 
number of double projections from lines lying on it and of 
possible linear transformations. (Fano (61).) 

6. Invariants. The question naturally arises whether 
algebraic or topological invariants exist, particular values of 
which can indicate the rationality or irrationality of F3. 

A necessary and sufficient condition that an irreducible 
algebraic curve in space of any number of dimensions shall 
be rational is that its genus is zero. (Clebsch (18).) 

An algebraic surface has an infinite number of invariants 
analogous to the genus of a curve, but a necessary and 
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sufficient condition that a surface shall be rational is that 
its arithmetic genus pn and its bigenus P2 should both be 
zero. (Castelnuovo (13).) That a surface may have both its 
geometric genus and its arithmetic genus equal to zero and 
still not be rational, was shown by Enriques (35). 

A system of invariants of three-dimensional varieties was 
determined by Pannelli (84), analogous to the genera of a 
surface. (Castelnuovo and Enriques (16).) Some of the 
fundamental concepts of invariants on hyperdimensional 
manifolds had been discussed by Noether (82). It was then 
shown by Severi (97) that all these invariants vanish for 
the cubic variety of S4, also for the general quartic Vé 
of S4, and for the Mz

6=(Vi2, F4
3) of S5, hence that the 

various indices of irregularity are zero. These latter F34, 
Af3

6 contain only complete intersections. (Severi (92), 
Fano (59).) 

The algebraic surfaces contained in V£ were obtained by 
Fano (56). 

The Ms6 is the representative of the general cubic line 
complex of S3, which has been extensively studied by Voss 
(111) and by Veneroni (109). In particular, it has 00 * linear 
pencils of lines or quadric reguli, hence M36 contains co1 

straight lines. By projecting the manifold from one of them, 
it can be mapped on S3 doubly, with a sextic surface of 
branch points. The two forms, F3

4 and ikf3
6, are birationally 

distinct. (Fano (59).) 
The assumption that either contains a homaloidal system 

of surfaces leads to a contradiction; hence both of these 
forms are irrational, that is, they can not be mapped bira­
tionally on S3. (Fano (59).) However, both can be mapped 
on S3 by means of an involution that is rational in one sense 
only. 

The actual process was outlined for M36 by Enriques (36), 
which establishes the important result that irrational in­
volutions in S3 exist. Other examples of involutions belonging 
to three-dimensional varieties were given by Marietta (72), 
and Aprile (2) showed that the Enriques involution is of 
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order 216, but that the manifold can be mapped on S$ by 
means of an involution of order 36. Further conditions for 
rationality were found by Enriques (37). 

These forms are much more general than F3
3. The general 

Ms6 does not contain any planes, since the general cubic line 
complex of S3 does not contain a bundle of lines. If now the 
complex be particularized to contain three distinct bundles 
of lines (or dually, three plane fields of lines), then the M^ 
contains three planes belonging to the same system on the 
quadric variety passing through it. This particularized M36 

is birationally identical with the general V£. 
Similarly, the V34 can be particularized to the extent of 

having a double line and still be much more general than the 
general cubic variety. I t may be desirable to study the 
properties of these particular forms in order to obtain those 
of the general Vi. 

The two general forms F34 and ikf3
6 are included in the 

general category Miv~~2 of Sp+i (Fano (62)) having surface 
sections regular with all their genera equal to unity, and 
curve sections canonical curves of genus p. Vzl corresponds 
to p = 3 and M£ to p = 4. The case p — 2 appears as a double 
S3 with a sextic surface of branch points, but this can be 
obtained by projecting Mz6 upon 5*3 from one of its lines, in 
a particular form. 

The case p = 5 is represented by the intersection of three 
general quadratic varieties in 56. I t contains no surfaces 
other than complete intersections with other forms. This 
manifold can be mapped on 5 3 by an involution of order 4. 
I t contains an infinite number of rational congruences of the 
first order, of rational curves. 

The general Vf :Sin~2 of S* has been studied from various 
points of view, but most of the properties found for larger 
values of n do not exist for n = 3. (Enriques (33).) 

As yet no topological invariants have been found that are 
characteristic of the general Vi, normal in S±. 

Various properties regarding the analytical representation 
of a variety and of manifolds have been found by Severi 
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(91), those regarding postulation (93), those concerning 
complete intersections of non-singular forms (94), (95). 

7. Sections by \S31. If all the plane sections of a surface 
in 5 3 are rational, the surface is rational. It is either ruled or 
is a Steiner quartic surface with three concurrent double 
lines. (Picard (85), Guccia (63).) 

If the sections by |5n_i | of a manifold M3 in Sn are rational 
surfaces, Mz is rational except possibly when M3 is V£ of 54, 
concerning which no conclusion can be drawn, as the method 
does not apply. (Fano (60).) 

Probably the transcendental methods of Bagnera-De 
Franchis (3)-(5), those of Enriques-Severi (3), and those 
of Severi (96), (98) as applied to hyperelliptic surfaces, may 
be extended to three-dimensional varieties. As yet no light 
has been thrown on V£ from this source. Another possible 
method of extension is that of Comessatti (23) in his study of 
real rational surfaces. 

8. Rational F3
8. Let there be given a cubic variety V£(x) 

= 0 in 6*4, such that each Xi may be expressed in the form 
pxi—fi(yu 3>2, 3>3, 3>4), each ƒ* being a rational quaternary 
form of order AT. When these values of x% are substituted in 
V(x)=0, it shall be identically satisfied, and that for an 
arbitrary set of values of the yi; no other set can be found 
which will define the same value of (x). 

Since X ^ x * = 0, V£ (x) = 0 define a cubic surface, it follows 
that the f i(y) must satisfy the following properties. 

(a) The system is linear of dimensionality 4. 
(b) Any two surfaces of the system intersect in a curve of 

genus 1. (Plane sections of a cubic surface.) 
(c) Any three intersect in three variable points. 
From any simple point Ox on V£ (x) project the variety on 

any space S$^ir not passing through Ox. In 7r, every point 
is the image of two points of F3

3 ; those on the generators of 
the cone of apparent contour project into the points of the 
quartic surface of branch points L4(x)^ui(x)— U\{x) -uz{x) 
= 0 in which U\ = 0 is the tangent S3 to V£ at Oz. The plane 
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Ui = 0 in 7T touches L 4 (x)=0 along the conic w2 = 0, which 
contains the six double points on Le(x)=0, defined by 
^1 = ^2 = ^3 = 0. Between the two three-spaces T and (y) there 
is a (1, 2) correspondence, in which L4(x) = 0 in ir is the sur­
face of branch points. 

Let the equation of V£ be U\x£ + 2u2x^+uz=:0. Then the 
projection of Vzd upon x6 = 0 as double Sz from 0 ^ ( 0 , 0, 0, 
0, 1) has the surface L4l(x)=0 of branch points. Let Oy 

be the image of Ox supposed to be non-singular in pxi—fi{y). 
Then (y0) satisfy the four equations ƒ»(y) = 0 , (i = l, 2, 3, 4). 

In the (1, 2) correspondence between (y) and #5 = 0, the 
point 06 is singular. In the projection upon #5 = 0 from 0X1 

the conjugate of Ox is the plane ^i = 0; it is the intersection 
with #i = 0 of the tangent 53 to Vzz at O*. The conjugate of 
Oy is then the ƒ of the <x>4 system defined by ui(f) = 0. 

The points of U\ — 0 in ir are of three kinds, those not on L4 

are all conjugate to Ox; those on u2 = 0, Ui = 0 but not on 
u% — 0 are all branch points at 0*, as u2 = 0 defines the quadric 
cone of inflexional tangents to Vz at 0X. 

Finally, the six double points u\ = 0, u2 = 0, Uz = 0 are images 
in #5 = 0 of the six lines of Vz which pass through Ox. 

Any S3 passing through Ox meets F3in a cubic surface which 
is transformed into itself by interchanging the two points 
of Vz on every line through Ox. 

Hence in (y), each fi(i9^5) is transformed into itself. The 
curves ƒ& = ( ) , / \ = 0, (i, k^S) of genus 1 are the images of 
the lines of 53 . 

The oo4 system |ƒ | is not invariant under I2, and the sub­
system is still of grade 3 when the fixed point Ov is adjoined. 

A section ^aiXi = 0 not passing through Ox meets F in a 
general cubic surface. The three-dimensional cone joining 
the surface to Ox meets F in a sextic surface, the complete 
intersection of V and a quadratic variety 12x |, obtained from 
^2diXi by the quadratic transformation 

(pxl = uw, (i = 1, • • • , 4), 

l p # 5
; = ~ U1X5 ~ U2. 
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The corresponding transformation in (y) becomes 

o/<(y/, • • • , y I) = «i(/(y))/<(y), 

*Myi, • • • , y 1) = - «i(/(y))/5(y) - «iCfoO), 

and for the involution ƒ2, of associated points, 

ƒ < ( / ) = /«(y). 

Thus, the quadratic image of any S% section in the trans­
formation T passes through the quadric surface Ui = 0, 
U2 = 0, which is the intersection of the tangent space to Vs 
at Ox and the quadric polar of 0X as to Vs. 

This is the quadric of inflexional tangents to V* at 0X. 
I t meets Vz in the six lines passing through 0X. 

The images of these six lines are six curves through 0y, 
common to the conjugates of the <*>4 \f |. They are all 
parasitic curves. 

Suppose V£ has a double point not lying in the tangent 53 

at the center of projection. Then in xs = 0 the surface of 
branch points L4 = 0 has a double point not lying in the singu­
lar plane ui = 0 associated with the center of projection. 

Conversely, if L4 = 0 has a double point not lying in Ui = 0, 
from the vanishing of the first derivatives of L4 as to Xi, 
those of Fa8 can be shown to vanish. Hence we may draw 
the following conclusion. 

A necessary and sufficient condition that the surface of branch 
points 1/4 = 0 has a double point not in the singular plane 
associated with the center of projection is that V£ has a double 
point not in the tangent space at the center of projection. 

If the values Xi a re substituted in L4, the result is a perfect 
square K2(y) = 0 : the surface of contact of V and its three-
dimensional tangent cone from Ox. 

If F3
3 has a double point P not at Ox, its image will be an 

actual double point of L4 = 0, not on Ui = 0. In this case, the 
parametric representation of V$z :P2 can be obtained im­
mediately by projecting V38 from P and cutting the pro­
jecting cone by any S3 not passing through P . 
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If #!==#!, and if u2 and u% contain xi at most to the first 
power, then 

Vz = UxXs2 + 2u2xz + Uz 

= Xi%J + 2(#ii>i + w2)x5 + w3 = 0 = #i/2 + *3, 

where Vi, Wi are ternary in x2l x3, #4 of degree i, and 

/2 = #6
2 + 2v!Xf> + v2, tz = 2w2#5 + w3, 

represents a cubic variety having a double point at the point 
( 1 , 0 , 0 , 0 ,0) . 

The representation in the space (3/) now takes the form 

pxi = - /3(y2, • • • , ye), 

pxi = yMy*> ' ' * > ys), (i = 2, • • •, 5) . 

The image of the double point is the quadric surface 
/2 = 0, and the fundamental element in (y) is the sextic 
space curve 76 of genus 4, fo = 0, /3 = 0. 

The oo* linear system, images of the Sz sections of Vz, 
now has the form 

ZXyrf* "~ a^ - ° ; 
thus it includes all the cubic surfaces passing through 76. 
This system satisfies conditions (a), (b) and (c). 

The image in (y) of the vertex (0, 0, 0, 0, 1 ) = 0 X is the 
point (0, 0, 0, 1), hence the 003 subsystem which defines 
the (1, 2) correspondence between #5 = 0and (y) has the form 

pxi = 

px2 = 

pxz = 

PX4 = 

cry2 = 

o-y3 = 

<ry± = 

o-yö = 

- 2w2(y2 

y42{yi, -

yzh{y2i • 

yMy*> -

XiX2, 

XlXZy 

X\X/^ y 

,ys,y4)yi 

• • , ye), 

• , ye), 

• • > ys), 

— (vitfi + w2) ± 

> + w3(y2,y3, 

[(vix2 + w2y 

yd 
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The equations of I2 in (y) can now be determined at once. 
The transformation is quartic, monoidal perspective. The 
surface of invariant points is 

w2yb2 — Ways + ViWs + V2W2 = 0. 

Now suppose that F3
3 is always rational, and that its equa­

tion contains a parameter X, such that when X = 0 the cor­
responding variety acquires a double point at P . Then 

PXi = **(y,X) = yMy)F(y) + X/<(y,X), (i = 2, • - • , 5), 

PX! = *i(y,X) = ~ h(y)F(y) + X/(y,X). 

Consider any linear system of at least 004 rational surfaces 
of order N. By using the common basis elements as part 
or all of the fundamental elements of the transforming 
system, suppose the system has been reduced to its simplest 
form. Then within the system construct a subsystem which 
satisfies conditions (a), (b), (c). Evidently, by any birational 
transformation of (y), the properties of V{x) will remain 
unchanged. Any rational surface may be transformed by 
means of its adjoints into one having plane sections of genus 
0, 1, 2, 3 or of any positive genus, but hyperelliptic. (En-
riques (33), (34).) We shall consider only those linear 
systems which belong to one or another of these five types, 
1, • • • , V and which satisfy the conditions (a), (b), (c). 

Finally, we select an additional basis point to define the 
(1, 2) correspondence. The five types will be considered in 
turn, but the three following properties will first be estab­
lished. 

9. Properties of Basis Elements. In the 004 system \f(y) |, 
images of the spatial sections \x\ of F3

3, is a subsystem 
oo3 \f(y) I having an additional basis point not a basis 
point of the larger 004 system. This special basis point is 
the image of an ordinary point Ox on V£. If now V£ 
be projected upon a space TT not passing through Ox 

from Ox doubly, then between w and (y) exists a (1, 2) 
correspondence, such that each f(y) is transformed into 
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itself, both images of a point in the image plane in w being in 
this surface. In the projection of V£ from 0X upon x, the 
fundamental element is the plane, which is the intersection 
of the tangent S3 to V£ a t 0X with T. The image of this 
plane in (y) is a definite ƒ of the subsystem. 

If I ƒ |, and therefore | / 1 , has any other simple basis point, 
there is one surface ƒ belonging to it having this point for 
double point; the point and the nodal surface are conjugate 
in the associated I2 of (y). The associated plane in w must 
therefore touch L a t every common point, since its image in 
(y) is composite; that is, the plane is a singular tangent 
plane of L and hence contains six double points. In no cases 
can all these points be in the first singular tangent plane. 
Therefore we have the following results. 

(A) If \f\ contains a simple isolated basis point, not that 
defining | / | , L has double points not in the characteristic 
singular plane. 

Similarly, if any surface of the system |/1 is composite, 
the two components are conjugate to each other in 72, and 
the associated plane in ir must touch L at every common 
point; tha t is, it is a singular plane; hence L contains double 
points not in the singular plane U\. (Sharpe and Snyder 
(100).) 

(B) If I ƒ I contains a composite surface, L has double points 
not in the characteristic singular plane. 

Let 5 be a curve in (y), which meets the surfaces of |/1 
only in basis points or in points of basis curves. The surfaces 
of the system which pass through a point of 5 must contain 
the whole curve. Hence 002 surfaces of |/1 contain 5. The 
images of these surfaces are 002 planes having the image of 
S in common, hence it must be a point. The curve must lie 
entirely on JKT, the surface of coincident points of (y), and the 
image point is a double point of L. (Segre (89).) If ô does not 
pass through Oy, this double point on L can not be in the 
characteristic singular plane of L. 

(C) If (y) contains a curve S meeting | ƒ | only in basis points, 
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and not passing through the basis point 0y of \f\,Lcontains a 
double point not lying in its characteristic singular plane. 

10. Rational Plane Sections. I. When the plane sections 
of a surface f(y) = 0 are rational the system |ƒ | consists of 
ruled surfaces or of Steiner surfaces, that is, quartics with 
three concurrent double lines. (Picard (85), Guccia (63).) 
The simplest case satisfying conditions (a), (b), (c) is that of 
quadrics through 5 points. (Sharpe and Snyder (100).) The 
surface L4 = 0 is now the 16-nodal Kummer surface, hence 
Vz(x) = 0 is nodal. In case of surfaces of order greater than 2, 
the variable curve of intersection is always rational since 
the double curves of each ƒ» must belong to the basis curve 
of the system. (Castelnuovo (12), Enriques (30).) 

11. Plane Sections of Genus 1. II . The simplest case is 
N = 3. Conditions (a), (b), (c) are satisfied; in every case 
L4 = 0 has a number of extra nodes. (Sharpe and Snyder 
(100).) Compare the general properties of linear systems of 
plane curves of general genus. (Segre (88).) 

N = 4: gives a system of quartic surfaces with a double 
conic and certain other basis elements. But this can be 
reduced to the preceding one by a quadratic transformation. 
For N — 5 the basis elements are a double C5 with a triple 
point. The residual intersection of any two surfaces of the 
system is an elliptic quintic curve; the system is co6 of grade 
5. The conditions (a), (b), (c) will be satisfied only by im­
posing two additional points; hence L4 will have another 
singular plane and V£ has nodes. 

For N greater than 5, there is no residual curve. (Del 
Pezzo (26).) For varieties with curve sections of genus 1, 
see Scorza (86). 

12. Plane Sections of Genus p — 2. I I I . This will be dis­
cussed in connection with general hyperelliptic sections. The 
surface defined by | C61: 8P2 is the double quadric cone, which 
can be mapped on a quartic surface with a double line, 
which is associated with a nodal variety. 
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13. Plane Sections of Genus p = 3. IV. The non-hyper-
elliptic case has been discussed by Castelnuovo (9) and by 
Scorza (87). Those reducible to quartics all have funda­
mental lines, hence they lead to nodal varieties. (Noether 
(83).) 

Those of the first species, that is, those containing a net 
of rational curves of order 4, meeting by twos in a single 
point, can in general not be reduced to quartics. 

The only exception is that of the monoids, represented on 
the plane by C4:12P1, the 12 basis points all lying on a cubic 
curve, which is the image of the triple point. Whatever 
system of basis curves is adjoined to obtain a subsystem 
satisfying conditions (a), (b), (c), fundamental lines are 
introduced, hence the associated V£ has one or more double 
points. The rational quartic curves lie in the planes of the 
bundle having the triple point for vertex. For a discussion 
of the involutions which leave invariant a web of monoids, 
see Snyder (105). 

The system [ C ^ - l l P 1 defines a rational quintic surface 
with a double cubic curve. All the possible forms of residual 
basis elements that can satisfy conditions (a), (b), (c) are 
given in (100) ; in each L4, and hence V£y has double points. 

14. Digression. Details of a Quintic Surface. Case / , 
Sharpe and Snyder (100), merits further study. The table 
of characteristics as given is incomplete. 

Using the notation there employed, the line h which is the 
partial image of hf in (#')» with which it is in (1, 1) cor­
respondence, is double on each 52i of the web, since h' is 
double on each S$ of the system in (#')• Moreover, the 
curves on H2, which are the residual images of the points of 
h', are conies. 

The curve ft meets H2 in two points not on 73. 
The line / joining them is axis of a pencil of planes, each 

of which cuts from H2 a parasitic conic. 
Two of these have for images in (x') the points of contact 

of h' and LI, hence the conies lie on Kio and are double on 
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each 52i of the web. Each of the six lines [i?4, Kio] —6r also 
belongs to the base of | S211 ; hence we have 

58i : yz*a*â%*6rp5h
22c2

2, 

K1Q: yéa2âW6r2c2. 

A plane meets its conjugate .S21 in a composite curve con­
sisting of (5i, Kio) and of a residual curve 

on : yB*a2â2pf?pzh22c2. 

Any two £21 may also have xi curves of order i> parasitic 
on the web | 55 \, and appearing to multiplicity i on | S211. 
The complete intersection then gives 

441 = 21 + 192 + 16 + 16 + 125 + 6 + 5 + 4 + 16 + X>'3#, 

and the intersection with Kio furnishes 

210 = 10 + 96 + 8 + 8 + 50 + 6 + 8 + ]•>*>. 

The only possible solution is #1 = 8, x2 = 4. The 8 lines are 
divided into two groups of four each, bisecants of ft meeting 
73 and a or a. Hence we may now write 

S21: 738«4â4/55
56fp5^22c2

2 8wi4^22, 

KIQI 734a2â2j#5 6r2£28^i4w2 , 

ô u : yéa2â2pb
zpsh22c24u2 , 

where the interpretation of the symbols in the last equation 
undergoes an obvious modification. 

The genus of Sn is consequently 9, and it intersects Kio in 
12 variable points. The images of these 12 points are the 
points of contact of 8' and L'; hence S', the variable double 
curve on S& , image in (x') of £21, is of order 6. The genus of 
Ô'is2. 

The curve on has a double point D on h, and the plane of 
5n meets the image conic in two points P\ and P2. The points 
D and P i form one pair of conjugates, and D and P2 another; 
hence 56' has a double point where it meets A', the tangents 
a t which are distinct from each other and from h'. The point 
is a triple point on 56 ' . The surface SQ has a composite double 
curve consisting of ô6

; and of h', the latter passing through 
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a double point on the former. The genus of the composite 
c7 can be found as follows. From an arbitrary point can be 
drawn 8 lines meeting ô6' twice, accounting for 7 apparent 
double points, and the line to the double point. The plane 
determined by the point and h' meets 56' in 4 other points, 
hence h = 8 + 4 = 12, p = 3. 

The web | 5Ö | can be transformed birationally into a web 
of monoids. Let 73 be defined by 

%i #2 #3 

#2 #3 #4 

Put Qi = XiXz — x2
2, Q2 = #2#4 — X32, Qz = XiXi — X2Xz. Consider 

the transformation defined by 

yi = QiXi, (i = 1,2,3), 3/4 = J^UiQi, 

where Ui is linear in xi, #2, #3. The equations define a (3, 3) 
non-involutorial transformation between (x) and (y) in which 
the fundamental elements in (x) are 73 and a plane cubic 
C3:x4 = 0, ^2uiQi = 0 meeting 73 in three points. The image 
in (v) of the plane ^4 = 0 is the point (0, 0, 0, l )s=0. Every 
point of 73 is transformed into a straight line, the locus of 
which is a ruled surface R$ of order 5, trisecants of an elliptic 
C6 :03 . The image of a point of C3 is a line through 0 , the 
locus of which is the cubic cone T3 : Ce. 

The image of an arbitrary line of (x) is a cubic curve 
through 0 ; a secant of 73 has for image a conic through 0 
and a generator of i?5 ; a bisecant of 73 goes into a line through 
0 and two generators of Rz. Thus the congruence of bisecants 
of 73 is transformed into the bundle0. Since every line of the 
congruence meets S5 in one point not on 73, the image must 
be a monoid in (;y). The complete image of S5 is of order 15, 
but -R02 is a component; a2, â2 go into double basis lines 
through 0. 

The curve 185 has for image a composite curve of order 15, 
consisting of a proper curve 187 of order 7 and of eight lines 
on JR5. Since ft meets XA = 0 in 5 points, 187 has 0 for five fold 
point. The residual C6 is simple, 
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s6: CHaaftCe. 

The variable curve of intersection is a Cio having O6. 
Since the variable CQ meets each a in two points, the image 

Cio meets each image à in two points, hence the curve 
lies on a quartic cone of genus 1, with two fixed double gener­
ators, [j37, C&] =6. 

15. Resumption of the Case p = 3. This completes the 
enumeration of webs of rational surfaces with plane sections 
of genus 3, belonging to the first species. (Castelnuovo (9).) 
The normal surfaces are of order 16 — K, lying in space of 
14 — K dimensions ( K < 1 2 ) . Those that are not normal can 
be projected into one or another of the types just con­
sidered. (Clebsch (19), Cremona (24), Sturm (108).) 

The FQ with a double curve of order 7, genus 3, has an 
actual triple point on both curve and surface. (Bordiga (7), 
Veronese (110).) 

The system |C4 | ' . 10P1 defines a sextic surface having a 
double curve C7, p = 3 with a triple point. The residual curve 
of order 8 is rational, hence condition (a) is not satisfied. 
Similarly for surfaces defined by | C41 having fewer than 10 
basis points. 

The second species is composed of those surfaces with 
plane sections of genus 3 which also contain an 002 system of 
curves of genus 1 ; this system can be reduced to quartics. 
(Castelnuovo (9).) If the system of elliptic quartics is com­
posed of plane curves, their planes pass through a point, 
and the surfaces are quartics having the given point for 
tacnode. 

In every case the surface contains an 00 2/2 of points, the 
lines joining pairs of conjugates being concurrent. From 
this point the surface can always be projected into a surface 
of Veronese in S&, counted twice. The surface is always ra­
tional except when the arithmetic genus is — 1 and when the 
curve of invariant points of the g2

x from 0 consists of four 
concurrent conies. These cases do not concern us. If the 
curves of genus 1 lying on the surface are space quartics, 
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the surface can be reduced to a quintic of S3 having three 
concurrent double lines, and hence a triple point. The net 
of quartics is cut from the surface by the net of quadric 
cones passing simply through the double lines. 

The P8 of 56> represented by \C% | :7P 2 , can be projected 
into an P4 of 5 3 by choosing the four centers of projection 
on the same elliptic curve lying on it. The result is a quartic 
of 5*3 with a tacnode and four simple concurrent lines in the 
tangent plane at the tacnode. (Noether (80), Cremona (24).) 

The system of curves |C61:7P23P1 defines an F^:3Ci3C^y 

the three double lines being concurrent, and the three 
simple lines lying in the planes containing a pair of double 
lines. In the plane representation, let the double points be 
A, B, C, D, E> Ff G and the simple ones P , Q, R. 

The plane images of the three double lines are C3 : A • • -
GPQ; C*:A • • • GPR; Cd:A • • • GQR. From the complete 
intersection of two surfaces of the system (P5) the three 
double lines should be subtracted, hence the plane sections 
are represented by \Cn \ :A* • • • G*PQR. Thus this charac­
teristic is of grade 29, genus 13, dimension 17. Hence there 
are nineteen linearly independent surfaces of the system. 

In order to secure a subsystem satisfying conditions 
(a), (b), (c), let (P5) have an additional basis curve Cm» of 
order m, genus p, meeting the totality of the double lines in 
S points ; then 

11m - 2p + 2 - 5s = 26, 

5m — p + 1 - 2s = 14, 

so tha t s = m + 2, p = 3m —17. (Sharpe and Snyder (100), 
p. 71.) The residual intersection of genus 1 is met by 
any third surface in three points, hence it can be reduced to 
a cubic through six basis points. It has one of the four forms 

(a) C3: ABCDEF, 

05) C3: ABC DEP, 

(7) C3: ABCDPQ, 

(8) C3: ABCPQR. 
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In (a), the residual basis curve Cm is 

C9: A* - • F*G*PQR. 

The corresponding basis curve on the surfaces \f(y) | 
is C7, £ = 4 , meeting each double line in 3 points. Through 
0 can be drawn two other bisecants of C7; these lines are 
fundamental, having five fixed points of intersection with 
each f(y) of the system. Hence L±{x) has additional double 
points, and consequently V has a double point. 

(]8). The basis curve is now of order 6, genus 1, meeting 
two of the double lines each in 3 points and the third in 2 
points. Hence as before, two additional bisecants can be 
drawn from 0; these lines are fundamental, giving rise to 
double points on -L4(#), and hence on V. 

(7). The basis curve is now composite, consisting of two 
conies which do not intersect, each meeting all the double 
lines once, and of a line skew to both conies, meeting one 
double line. The additional secant of both conies from 0 
accounts for double points on V. 

(ô). This case is impossible, as the residual basis curve is 
of order 4 and genus — 5. 

There is one more possible case of systems \f(y) | where plane 
sections of genus 3 exists, namely, that having a plane repre­
sentation of the form \Ci\; 7P22Pi. (Caporali (8).) 

The double basis curve of the system \f(y) \ consists of a 
line G and of a sextic 76, p = 2, having two double points on 
the line. One surface of the system \f(y) | must be composite, 
hence L4 and also Vs have double points. 

The cases of systems of species 3 and of species 4, Castel-
nuovo (9), reduce to systems of quartics with point singu­
larities more complicated than in that of type 2, but without 
basis lines. (Noether (83).) 

The first surface is represented by [Cel^PMrP1, all 11 
basis points lying on a cubic curve 7. Let the singular point 
be (0, 0, 0, 1), and the tangent plane be #i = 0. Two surfaces 
of the system meet in a curve G6 of order 16, with 8 branches 
through 0, all lying in #1 = 0. The image of a plane section 
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through O consists of y and of another cubic with the symbol 
C3: ABCDEFG. The plane representation of Cw is G 2 :7P 4 . 
When this is composite, one component being of genus 1 and 
variable, it can be reduced to the Cs'A • • • F, and the 
fixed basis curve has for image C$\AZ • • • P3G4, £ = 4. In 
space the variable curve is a C& with three branches through 
0; the basis curve is then Go with five branches through 0 . 
Since two trisecants of d o can be drawn through 0, these 
lines are fundamental, giving rise to double points on F33. 

I t was assumed that the variable cubic in the plane 
representation had for basis points A> B, C, D, E, F; if in­
stead one or more be chosen from the simple basis points 
of the system, practically the same argument may be re­
peated, with the same conclusion. 

Another case is that of P4 represented by \Ci\:Pz9P2, 
all the basis points lying on a cubic curve, and another is 
the F* represented by |C81 :SPzP2P1

i the ten basis points 
lying on a cubic. Both of these can be considered as the 
preceding case, with the same result. 

This completes the case p = 3, non-hyperelliptic. When 
the net of curves on each surface of the system is composite, 
the plane sections of genus 3 are hyperelliptic. In this case 
the Fie is represented by |C61 :P*P2 or by |C8_* | :P6-*(3-fe) 
P 2 , (& = 0, 1, 2, 3), the double points being adjacent to the 
P6~*. They will be considered in connection with the general 
hyperelliptic case. (De Franchis (25).) 

16. General Hyperelliptic Sections. V. From Castelnuovo 
(10) and Enriques (31) we know that every surface with hy­
perelliptic plane sections or by sections Sn-i, if it lies in 5„, is 
rational. If the genus of the sections exceeds 1, the surface 
contains a rational 001 system of conies, such that through 
any point of the surface passes just one conic of the system. 
If the section is of order n and genus TT, the surface cannot 
belong to a space larger than 5W_T+IÎ if it belongs to a space 
of lower dimensionality, it is the projection of a normal sur­
face Of Sn-r+U 
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The planes of the ool conies on the surface form a variety 
of order not larger than n — ir— 1. 

The surface can be mapped on a plane such that the 
plane sections (or those of Sr~i if in Sr) are represented by 
curves of order k having a common point of multiplicity 
k — 2, and possibly other basis points. Hence if the genus 
is 7T, the maximum order is 47T+4. Every such surface of 
lower order can be obtained from a surface of order 47T+4 
of 537T+5 from 47T+4 — n points upon it, and possibly from 
other points not on the surface. 

In order to obtain a subsystem satisfying conditions (a), 
(b), (c), it is necessary to impose simple basis points in every 
case. When double points exist among the additional basis 
points, the curves can be reduced to those of lower order. 
Several cases of | Ck | : Pk~2 have been considered in con­
nection with other problems. Let x be the number of simple 
basis points, N the order of the surface, m the order of its 
double curve. Then for (fe, x, N, m) (4, 8, 4, 1) see (100), 
p. 61; (4, 7, 5, 3) see (100), p. 72; (4, 6, 6, 8) see (8), p. 202; 
(5, 11, 5, 3) see (100), p. 71; (5, 10, 6, 7) see (8), p. 207. 

The system | FN | : dN~2 y can be treated as in (100) 
p. 62, and the monoidal cases of any order necessarily have 
fundamental lines. 

If the assumption made in § 8 is justifiable it follows 
that the general cubic variety of 54 is irrational. 

17. Reduction to Monoidal Types. From the preceding 
representation, follows at once the proof of the following 
theorem. 

All (1, 2) quaternary correspondences of genus 1, in which 
the quartic surface of branch points has a singular plane and 
at least one double point not in this planef can be expressed 
in terms of a(l, 1) correspondence between the points of an S$ 
and the pairs of points of a perspective monoidal involution 
of order two in another space S$. 

Let there be a second involution 72 in (x), having the same 
surface of branch points L4 ' in (#')• Since the points of Vt 
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and of (x) are in (1, 1) correspondence, we have in any case 
yi=fi(xi, #2, x3, x4), i = l, 2, 3, 4. For example, by including 
the vertex P on Vz from which the variety is projected on the 
double 53, we may write 

y% = F2(x)Xi; yh = F3(x). 

Let the pairs of points of 72 also be represented on Vs. 
Since the two surfaces of coincident points Ki of I\ and K2 

of I2 are each in (1, 1) correspondence with L4', they can 
be superposed one on the other. 

Then 72 is transformed into a second monoidal involution, 
having a second double point Qx on K2 for vertex. The 
image on Vz of Qx is a second double point, hence L4 ' has 
a second double point. The line joining the double points 
on Vz lies entirely upon it; every plane through it meets 
Vz in a residual conic, image of a line of the bundle Qx in (#). 
This line contains an infinite number of pairs of conjugate 
points with double points on Kx. Hence the conic on Vz 
contains an infinité number of pairs of points forming an 
involution in which the double points are the residual points 
of intersection of the plane of the conic with the curve of 
contact Kv of the tangent cone from P . Thus, by I2

Y every 
point of Kv remains invariant; by projection upon Xz' — O, 
the associated point on L4' is a branch point as before. 

If in (x) there exist several involutions having the same 
quartic surface of branch points with a singular plane, by 
the above process they can all be reduced to perspective 
monoidal involutions by the same transformation. 

When L4 ' has only one double point not in the singular 
plane, the web of invariant cubic surfaces in (x) has a simple 
point and a general C6, p = 4, for basis elements. It is described 
as case D of cubics in Sharpe and Snyder (100), p. 58. I t 
does not appear again in a transformed form in the enumera­
tion there given. 

If LA has two double points not in the singular plane, K(x) 
has a second double point, the quadric F2 containing C6 and 
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the cubics of the web touch each other, C6 has an actual 
double point and is now of genus 3. 

Similarly, L± may have 3 or 4, . . . or 10 double points not 
in its singular plane. In the latter case it is the 16-nodal 
Kurrimer surface, and K may be reduced to the symmetroid. 
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