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T H E E X I S T E N C E OF T H E LEBESGUE-STIELTJES 
INTEGRAL* 

BY R. L. JEFFERY 

A definition of a Lebesgue-Stieltjes integral of a function 
f(x) defined on (a, b) with respect to a non-decreasing func­
tion V(x) bounded on (a, b) has been given by Hildebrandt.f 

This definition involves the idea of the measurability of 
ƒ with respect to F. If a is the interval a'<x<b', then 
V(a) = V(b'-0)-V(a'+0). Let a set E be enclosed in a 
finite or countably infinite set of non-overlapping open 
intervals A =cei, a2y • • • . Let V(E) be the lower limit of 
V(A)=y%2V(ai) for all possible enclosures A. In the same 
way define V(CE). When 

CI) V(E) + V(CE) = V(a,b) = V(b) - V(a), 

the set E is said to be measurable relative to F. If for all 
real values of / the set for which ƒ > / satisfies (1), then ƒ is 
measurable relative to F. HobsonJ gives a definition which 
involves a different formulation of the same idea. To state 
this we shall make use of the following correspondence be­
tween the points of a= V(a) SuS V(b) = /3 and a^x^b. 
First, if x is a point of discontinuity of F, then x goes by 
means of u= V(x) into the closed interval V{x — 0)^u 
^ V(x+0). There will then correspond to each u on (a, ]8) 
at least one value of x on (a, b). If to a value of u there 
corresponds more than one value of #, then F is constant 
throughout an interval, and xu shall be the lower end 
point of this interval, or the lower bound of points of the 
interval in case it is open. If f(x) is any function defined on 
(a, b)f then \[/(u) is defined by $(u) =/(xw) and 

LS f f(x)dV(x) =L f f(u)du, 

* Presented to the Society, September 7, 1928. 
t This Bulletin, vol. 24, pp. 188-190. 
{ Theory of Functions of a Real Variable, 3d éd., vol. I, §445. 



358 R. L. JEFFERY [May-June, 

when the latter exists. Thus the requirement that ƒ be meas­
urable relative to V is replaced by the requirement that \p 
be measurable on (ce, /3). In this note we determine some 
necessary and sufficient conditions bearing on V under 
which all Lebesgue measurable functions ƒ are measurable 
relative to V. These conditions are also necessary and suffi­
cient to insure that all measurable functions ƒ are carried 
into functions \f/(u) =f(xu) measurable on (a, j3). 

As a matter of notation, we shall use A and B to indicate 
sets of intervals enclosing E and CE respectively. Each set 
shall be non-overlapping and open, and each interval shall 
contain at least one point of the set enclosed. Eu shall 
denote the set into which Ex is carried by means of the re­
lation u= V(x), a point of discontinuity of V going into a 
closed interval as agreed upon above. If xi, #2, • • • are 
the countable set of discontinuities of V and s< the saltus of 
V at Xi, then, for a given €, Kx = xi, x2, • • • , xk where 

Z X J H - I ^ < 6 / 2 . For convenient reference we state some 
properties* of all sets G which are measurable relative to V. 

(1) If Ei and E2 belong to G then E i + £ 2 belongs to G. 
(2) The Borel measurable sets belong to G. 
(3) A necessary and sufficient condition that E be meas­

urable relative to V is that there exist intervals A and B 
enclosing E and CE such that V(AB) <e. 

(4) Any set £ on a set of open intervals throughout which 
V is constant is measurable relative to V. 

This follows at once from (3). For evidently E can be 
put in A where V(A) = 0. If then CE is put in any set 5 , 
we have 0 ^ V(AB) ^ V(A), which shows that (3) is satisfied. 

THEOREM I. A necessary and sufficient condition that 
Ex be measurable relative to V is that Eu be measurable on 
(a, 0). 

* (1) and (2) are proved by Radon, Wiener Sitzungberichte, vol. 122, 
pp. 1305 ff. (3) is proved by Bliss, (this Bulletin, vol. 24, p. 13), for 
continuous monotone functions, but the proof is applicable to any non-
decreasing function. 
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Suppose Ex measurable relative to V. Then by (3) we 
can determine Ax and Bx so tha t V(AxBx)<e. The open 
intervals Ax go, by means of u=V(x), into a set of open 
intervals Au together with a countable set of points A J 
which belong to Eu, and Eu is on Au+Au

f. Similarly CEU 

is on open intervals Bu and a countable set of points BÛ. 
But m(AuBu) = V(AXBX) <€. This, together with the fact 
that Au and Bu' are countable, shows that Eu is measurable. 

Suppose Eu is measurable. Let £M be the closed intervals 
of Eu which come from points of discontinuity of V. E* 
is then a countable set of points which, on account of (2) 
is measurable relative to V. Let eu~Eu —SM. If Ku is the 
set of closed intervals coming from KXf then eu is on the open 
intervals CKU. Put eu in Au and ceu in BM where ^4„ is on 
CKU and where m(AuBu)<€/2. The open intervals -4M and 
2?M correspond to open intervals Ax and Bx which contain ex 

and cex respectively. And since Au is not on 2£M, A x contains 
none of the points of the set Kx. Consequently (AXBX) 
contains none of the set Kxt and as a result of this 

V(AXBX) ^ m{AuBu) + ^st < e. 

I t then follows from (3) that ex is measurable relative to V, 
and by (1) so also is Ex = 'Ex+ex. 

I t has been shown by Carathéodory* that the function V 
can be represented as the sum of two functions F~<£+x> 
where <f> depends only on the discontinuities of V and where 
X is continuous. We can now prove the following theorem. 

THEOREM 11.f In order that every measurable set Ex go into 
a measurable set EU1 it is necessary and sufficient that x be 
absolutely continuous. 

* Vorlesungen fiber Réelle Funktionen, §153, 
f The corresponding theorem for continuous functions has been proved 

by Rademacher, (Monatshefte für Mathematik und Physik, vol. 27 (1916), 
p. 266). His theorem is the special case of ours where <f> is identically zero. 
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The condition is sufficient. Suppose Ex measurable. Let 
\EX be the part of Ex which belongs either to the discontinui­
ties of V or to intervals throughout which V is constant. 
iEUj being a set of closed intervals and a countable set of 
points, is measurable. We complete the argument by showing 
that eu — Eu — iEu can be put in 4 t t and ceu in BUy where 
m(AuBu)<€. The function x being absolutely continuous, 
there exists a S > 0 such that if D is any set of intervals with 
m(D)<ö, t h e n x ( ^ ) < € / 2 . The set ex contains none of the 
points of Kx. Hence, since ex is measurable and since Kx is 
a finite set, ex can be put in Ax and cex in BXl where Ax con­
tains none of the points of KX1 and where m(AxBx)<e/2. 
Since each interval of the set A x contains at least one point 
of exi and since the end points of Bx are points of ex it follows 
that Ax and Bx correspond to open intervals Au and Bu 

containing eu and ceu respectively. Again, since Ax con­
tains none of the points of Kxt neither does (AXBX). Hence, 

00 

m(AuBu) = V(AXBX) = 4>(AXBX) +x(AxBx) < £ s{ + e/2 <e . 

The condition is also necessary. Suppose x is not ab­
solutely continuous. For a given e > 0 let x(8) be the upper 
limit of x(«) for all possible sets of intervals a for which 
ma<h. Obviously, if Si<82, then x(àù = x(àù- And since 
X is not absolutely continuous, lim5_ox(ô) = d > 0 . Making 
use of these facts we now prove the following lemma. 

LEMMA I. There exists on (a, b) a set of points Dx of zero 
measure which contains no points of discontinuity of V> and no 
points of intervals throughout which V is constant, and which 
is carried, by means of w=F(x ) , into a measurable* set Du 

with mDu^d. 
Choose Si, 82, • • • , an infinite sequence of positive num­

bers approaching zero monotonically, and such that ][̂ S< 

* Carathéodory (loc. cit., §512) has considered the analogous problem 
for continuous monotone functions. By a method different from ours he 
arrives at the existence of a set Dx of zero measure which goes into a set 
Du with outer measure *zd. 
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converges. Since x(^ù = d f ° r a l l h we can find a set of 
intervals ai such that x(ax)>d — e} and ma£ <bi. The 
infinite sequence of sets of intervals ai defines, by means of 
« = xW» a n infinite sequence of sets of intervals ai on 
a , = x ( ö ) = ^ = i8==x(^)» where mai =x(ai)>d — e, (* = 1| 
2, • • • ). I t then follows* that on (a', /3') we have a measur­
able set of points Dû " where rnDu' ">d — e, and each point 
of which belongs to an infinite number of the sets of inter­
vals aj. If we remove from Dû " the countable set which 
comes by means of u = x(%) from the countable set of dis­
continuities of V, there remains a set Dû' which still has 
measure>d — e. Let D" be the set on (a, b) whose image, 
by means of w = x(»), is Dû'. Each point of DJ is on an 
infinite set of the sets of intervals ai. Consequently each 
point of the set D£' is on an infinite set of the sets of inter­
vals ai. Thus, for i = /, where / is as large as we wish, Dû' 
is on an infinite set of the intervals ax

l+l, ax
l+2, • • • . Hence 

mD" é^ïLi+imai[ ^]C£-z+iS*. On account of the con­
vergence of X)8» and the fact that we can take I as great as we 
please, it follows that rnD" = 0. If now we consider a se­
quence of values of € approaching zero, we get a sequence of 
sets i-D*", 2DÛ' 9 • • • , where iD" has zero measure and 
iDu" has measure }£d— e*. I t follows that the set Dû which 
consists of all the points in any of the sets {Dû has measure 
^ dy and the corresponding set Dû has measure zero. 

I t will now be shown that u= V(x) carries Dû into a set 
Du measurable on {a, j8) with mDu^d. On (a', j8'), Dû is 
measurable and contains none of the points Ku which come 
from Kx by means of u = x(%)- Hence Dû can be put in Au 

and CDU in Bu where Au contains none of the finite set 
Ku, and where m(AuBu)<e/2. The intervals Au and Bu 

correspond by means of w = x 0 0 to intervals Ax and BXy 

where A x contains Dû and contains none of the points of Kxy 

* W. H. Young, Proceedings of the London Mathematical Society, 
(2), vol. 2, p. 26. Also Borel, Comptes Rendus, December, 1903. 
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and where x(AXBX) = m(AuBu) ^e/2 . But sînce Ax contains 
no points of Kx neither does (AXBX). Hence 

V(AXBX) = 4>{AXBX) + X(AXBX) ^ f > , + ^ < €. 

Hence Dx is measurable relative to V. It then follows from 
Theorem I that Du is measurable on (a, /3). And evidently 
mDu cannot be less than x(Dx )^d. If we now remove from 
Du the countable set which comes by means of w= V(x) 
from intervals throughout which V is constant, we arrive at 
a set Du, where mDu ^ d, and where the corresponding set 
Dx contains no discontinuities of V and no points of intervals 
throughout which V is constant, and where mDx = 0. 

If Nu is any non-measurable component of Du, then Nx is 
part of Dx and mNx = 0. But u = V(x) carries Nx into NU. 
Hence V does not carry every set measurable on (a, b) into 
a set measurable on (ce, /3). If /(^) is a function such that 
ƒ = 1 on Nx and zero elsewhere on (a, ft), then ^(z/) —f{xu) = 1 
on iVw and zero elsewhere on (a, /3). Thus ^(#) is not 
measurable on (ce, /3). Also, by Theorem I, ƒ is not measurable 
relative to V. We have the following result. 

THEOREM III. A necessary and sufficient condition that 
every f unction f measurable on (a, b) be measurable relative to V 
is that x be absolutely continuous. This condition is also neces­
sary and sufficient that \{/(u) =f(xu) be measurable on (ce, /3). 

THEOREM IV.* A necessary and sufficient condition that 
every function ƒ bounded and measurable on (a, b) possess a 
Lebesgue-Stieltjes integral in the sense of Hildebrandtt or in the 
sense of Hobson, is that % be absolutely continuous. 

ACADIA UNIVERSITY 

* M. D. Menchoff and Mile. Bary, Annali di Mathematica, (4), vol. 5, 
have considered the Lebesgue-Stieltjes integral of ƒ with respect to V where 
V is absolutely continuous. They show (p. 24) that the integral accord­
ing to their definition exists whenever ƒ is bounded and measurable. Their 
discussion is only applicable to the case where V is absolutely continuous. 


