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since (m — l)2 is the number of apparent intersections of 
Cm and Cm~l. If we replace m by (w + l ) /2 , the result is 

(7) h - (n - l )2 /4 + A/; + A7" 

and hence 

(8) P = (n - 1)(* - 3)/4 - A" - A"\ 

To find A' or A" and A"' we repeat the process. We soon 
arrive at the component curves whose orders are equal to or 
less than twice the dimensions of the several sub-spaces in 
which the component curves lie, and then apply Veronese's 
rule. Or, in case n is very large, we arrive at the component 
curves which are all plane and have no double points. 

It is to be noticed that hf = h" = h"' = 0 if r = 3. Hence 
the greatest deficiency of any 3-space curve Cn is 

p = (n — 2)2/4, for n even ; 
and 

p = (n — l)(n — 3)/4, for n odd. 
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A NOTE ON CERTAIN CONTINUOUS 
NON-DIFFERENTIABLE FUNCTIONS* 

BY F. W. PERKINS 

This note gives a treatment of some phases of the theory 
of a class of functions of which a particular example has 
already been studied by the author in a note entitled An 
elementary example of a continuous non-differentiable function, 
in the American Mathematical Monthly (vol. 34 (1927), 
pp. 476-478). The method there used for the construction 
of a function with the desired properties bears some resem­
blance to that used by Broden, Köpke, and Steinitz for the 

* Presented to the Society, September 6, 1928. 
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construction and study of functions with notable properties 
with respect to differentiability.* The example consists of a 
function belonging to a class investigated by Steinitz, but the 
discussion is somewhat more elementary in form than that 
given previously in the more general treatment. The method 
consists, briefly, in assigning functional values at an every­
where dense set of points in such a way that the function can 
be extended so as to be continuous on the whole interval and 
to have no derivative. The principle involved enables us not 
only to construct non-differentiable functions but also to give 
in simple form a sufficient condition that a continuous func­
tion be convertible into a non-differentiable continuous func­
tion by a certain change of variable. 

First let us examine a few of the more immediate con­
sequences of non-differentiability. We note that such a 
function cannot be of bounded variation on any subinterval, 
for by a well known theorem, a function of bounded variation 
has a derivative almost everywhere, that is, except possibly 
at the points of a set of measure zero in the sense of 
Lebesgue.f I t follows that a function which has no derivative 
must have maxima and minimat on every subinterval. 

* E. Steinitz, Stetigkeit una Dijferentialquotient, Mathematische An­
nalen, vol. 52 (1899), pp. 58-69. For a description of the methods of 
Broden and Köpke, see Hobson, The Theory of Functions of a Real Variable, 
3d éd., 1927, vol. 1, pp. 387 ff. See also a paper by E. H. Moore, Trans­
actions of this Society, vol. 1 (1900), pp. 81 ff; and one by Hahn, Jahres-
bericht der Vereinigung, vol. 26 (1918), pp. 281 ff. 

t See, for example, Carathéodory, Vorlesungen Uber Réelle Funkiionen, 
2d éd., 1927, p. 188, Satz 9, and p. 563 ff. 

J By a maximum value of a function we shall mean a value attained at 
a point x', not exceeded at any point in the neighborhood of x', and not 
maintained constantly in any interval having x' as an interior or end point. 
The corresponding definition for a minimum is of course also used. It 
may be noted that a function may have an extremum in this sense which is 
not an extremum in the "strict" sense in which it is required that a maxi­
mum value, for example, be actually greater than all other functional values 
in the neighborhood of the point at which it is attained. Consider, for 
instance, the behavior at x = 0 of the function defined below : 

f/(*)=0 when # = 0, 
Xf(x) - - x 2 sin2 (1/*) when 0 < | x\ < 1. 
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This condition may be expressed analytically in the 
following manner: Let f(x) be any function continuous on 
the interval / : a^x^b, but not constant on any sub-
interval of / . A necessary and sufficient condition that f(x) 
have maxima and minima which are everywhere dense on I 
is that every subinterval XQ^X^XZ at the ends of which 
f(x) assumes distinct values contains two interior points 
X\ and X2 such that Xi<x2 and 

/ ( * 0 - / ( * 2 ) 

ƒ Us) - / O o ) 

For if f(x) has extrema which are everywhere dense we may 
obviously choose Xi and x% so that the numerator has the 
same sign as the denominator. On the other hand, if the 
fraction is positive, the function f(x) has an extremum be­
tween Xo and X3. In establishing this fact, we may assume, 
without loss of generality, that the denominator is positive. 
In the case in which ƒ(x0) ^ / (x 2 ) , we see that ƒ (x) has a maxi­
mum between x0 and x2; if / (x 0 )>/(x 2 ) , we infer that /(x) 
has a minimum between Xi and x3. Moreover, on any sub-
interval at the ends of which f(x) assumes equal values, f(x) 
must have an extremum at an interior point. I t follows, then, 
that /(x) has maxima and minima which are everywhere 
dense on / . 

We note that this property in regard to extrema is one 
which is preserved if we replace the variable x by a variable 
£ connected with it by the relation x = <£(£), where the function 
$(£) is continuous on the interval a^ÇSb and satisfies the 
conditions <£(£')<</>(£") if * ' < £ " , 4(a) =a, </>(b)=b. The 
property of non-differentiability is obviously not always 
preserved by such a change of variable. Hence we see that 
although the condition that the extrema of f(x) be every­
where dense on / is necessary for non-differentiability, it is 
not sufficient. Moreover there exist functions with extrema 
which are everywhere dense and which cannot be rendered 
non-differentiable by such a change of variable. 
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We propose to show now that a slight modification of the 
condition given above for everywhere dense extrema leads 
to a condition which is sufficient to insure non-differenti­
ability after a suitable change of variable. 

THEOREM. Iff(x) is continuous on the interval I: a^x^b, 
but is not constant on any subinterval, and if there exists a 
positive quantity 5 such that every subinterval x^^x^x^ at the 
ends of which f(x) assumes distinct values contains two points 
Xi and X2 such that x\ < x2 and 

f fa) -ffa) 
> o, 

ffa) -ffa) 
then there exists a function </>(£), continuous and monotonically 
increasing on the intervalaSi^b} such that F(£) = ƒ[<£(£)] fails 
to have a derivative with respect to £ at every point of the in­
terval aS^'èb. 

We shall first treat the case in which f(x) attains its least 
and greatest values on 2* at the points x = a and x = b respec­
tively : ƒ (a) Sf(x) ^f(b) or ƒ(&) ̂ f(x) ^f(a) whena^x^b. 

We consider first the value of the fraction 

ffa) - f fa) 
Kb)-f (a) 

for values of x\ and x2 such that a^xi^x2^b. Since this is 
a particular form of the fraction given in the hypothesis of 
the theorem, we know that its greatest value must be 
greater than 5. We note that to attain this maximum value 
we may have neither Xi = a nor X2 = b. The fraction may 
conceivably attain its maximum value at more than one 
pair of points Xi and x2. However, the set of all points which 
may be used as Xi is closed, and therefore contains a point 
farthest to the left. We shall call this point X\. All the 
points which are possible choices for an x2 corresponding 
to Xi = Xi form a closed set, and therefore contain a point 
farthest to the right, which we shall call X2. We now repeat 
the same process for each of the intervals a^x^Xu 
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Xi g x ^ X2 and X2 S x ^ b. I t will be noted that the function 
fix) attains its extreme values on any one of these intervals 
at the ends of that interval. The three new pairs of points 
thus obtained, taken together with the points x = Xi and 
x~X2, divide the interval I into nine parts, to each of which 
we apply the process again, and so on indefinitely. 

The set {X} of all points thus obtained is everywhere 
dense on 7. For if this is not true there exists a subinterval 7 
containing none of these points. Let /x be the difference 
between the greatest value and the least value of f(x) on 7. 
Since f(x) is not constant on any interval we know that 
^ > 0 . Let Ii be that subinterval obtained by the first sub­
division (by the points X\ and X2) which contains 7 ; let h 
be that subinterval obtained by the second subdivision 
which contains 7, and so on. In this way we get an infinite 
sequence of subintervals 2i, I2, ƒ3, * * * 1 each of which con­
tains all the following, and also contains 7. Let Xu X(, 
X{' % - • • , be the left hand end points of these intervals. 
Each of these points lies to the left of the next following 
point of the sequence, and also to the left of 7. Consequently 
they have a unique limit point, X, on I. Moreover, at any 
two successive points of the sequence Xu X{, X{', • • • , the 
function f(x) has values which, it is readily seen, differ by 
at least ju. This implies that f(x) is discontinuous at x = X, 
contrary to our hypothesis. This contradiction establishes 
the desired result. I t may be noted, incidentally, that the 
points of the everywhere dense set which we have just 
described yield extrema of the function f(x). 

We now proceed to the definition of the function <£(£)• 
Since this function is to be continuous it is possible to define 
it completely by assigning suitable functional values at the 
points of an everywhere dense set. First we set <t>(a)=a, 
(t>(b) =&, and #(£1) = ^ i and 0(£2) = ^ 2 , where* 

•Since -P(Ö=/[0(Ö], while 4>{a)=a and <*>(&) =6, it follows that 
F(a)—f(à)t and F(b)~f(b). However in analogous work a little later it 
will prove necessary to distinguish carefully between the functions F and ƒ. 
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f _ aF(b) - bF(a) + f(X2)[b - a] 

*l ~ F(b) - FÎÔ) ' 

_ aF(b) - bF(a) +f(X1)[b - a] 

I*2 ~ F(b) - F{a) 

These formulas may be given a simple geometric in­
terpretation: £1 and £2 are the abscissae of the points of 
intersection of the lines joining [a, F(a)] and [b, F(b)] 
and the lines rj=f(X2) and rj=f(Xi), respectively, in the £, rj 
plane. 

Each of the subintervals into which Xi and X2 divide / 
contains two points standing in the same relation to that 
subinterval as Xi and X2 do to / . By the method given above 
we determine the corresponding values of £. We repeat this 
process indefinitely, obtaining an infinite set of points at 
each of which the function <£(£) is defined. The order relations 
between these points is the same as the order relations be­
tween the corresponding points X, and so <£(£), in s o far a s 

it is now defined, is a monotonically increasing function. 
The straight line joining [a, F(a) ] and [&, F(b) ] is the graph 

of a function i*\)(£) which is a first approximation to the 
function -F(£). The broken line joining the points [a, F(a)], 
te, F(£i)l fe, *"(&)] and [b, F(b)] yields a second ap­
proximation, Fi(£) ; a third approximation may be obtained by 
replacing each segment of this line by a broken line of three 
pieces related to the segment in the same way as the graph of 
the second approximation is to that of the first, and so on.* 

Denoting by A» the slope of a line segment of the graph of 
an approximating function Ffâ), we see, by a simple com­
putation, that the slope of the second of the line segments by 
which it is replaced in the graph of -Ft+i(£) is —X$-, while the 
slope of each of the other two segments is at least as great 
numerically as |\* |( l + §). This enables us to prove that the 

* The sequence F0(£), Fi(g), F2(£), • • • converges uniformly, but this 
is of no importance for our proof, as we shall obtain JF(£) by another 
method. We shall have occasion, however, to use these functions in another 
connection. 
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point set on which we have already defined the function 
0(£) is everywhere dense. For if such is not the case there 
exists an interval throughout which each approximating 
function is linear with a slope at least as great numerically 
as the positive quantity |X0|. Consequently there exists a 
number c>0 and pairs of points of the set {X}, as near 
together as we choose to stipulate in advance, at which the 
function f(x) assumes values differing by at least c. But this 
contradicts the hypothesis of continuity, and so shows that 
<K£) is defined on an everywhere dense set of points. 

At any point £ = £' at which <£(£) is not already denned 
we set 0(£) equal to the least upper bound of all its known 
values on the interval a^%<£'. The function <£(£) is now 
defined and monotonically increasing on the interval 
a^%^b. I t is continuous there; for a discontinuity could 
only be a finite jump, which would imply the existence of a 
subinterval of / free from points of the set {X} , contrary to 
the known fact that this set is everywhere dense. 

We shall now show that the continuous function 
F(%) = : / [0tó)] has no derivative at any point of the interval 
a^%Sb. We understand this statement to mean that at no 
point £ = £' of this interval does the difference quotient 
[F(%'+h) — F(£')]/h approach a limit as h approaches zero.* 

If £' corresponds to one of the points of the set {X}, then 
it is clear that F(i;) has no derivative at £ = £', because, for 
sufficiently large values of n, the forward derivative of 
Fn+iCf) at that point is at least 1 + 8 times as great numeri­
cally as the forward derivative of Fn(£) at £ = £', and so the 
forward derivative of Fn+k(%) at £ = £' can be made as 
large numerically as we like by choosing k sufficiently 
large. Since the forward derivatives of Fn(£), Fw+i(£), 
Fn+2(£), • • • at £ = £' give us the values of the difference 
quotient [F(l;' + h) — F(i;')]/h for a sequence of values of h 
approaching zero as a limit, we see that the difference 

* Some writers use a definition of differentiability which allows the 
difference quotient either to approach a limit or to become positively or 
negatively infinite. 
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quotient cannot approach a limit in this case. Backward 
derivatives of the approximating functions may be used 
equally well. The forward and backward derivatives have 
opposite signs, and so we see that for a certain sequence of 
positive values of h tending toward zero the difference 
quotient becomes infinite with one sign, while for a certain 
sequence of negative values of h tending toward zero the 
difference quotient becomes infinite with the other sign. 
I t should be noted, however, that this does not necessarily 
mean in either case that the difference quotient becomes 
infinite independently of the manner in which h approaches 
zero from one side.* 

I t may also be noted that F(%) has no forward derivative 
at the point x — a and no backward derivative at x = by 

though the difference quotient may conceivably become 
positively or negatively infinite at these points. 

I t remains to show that F(%) has no derivative at any point 
£' of the open interval a < £ < & which does not correspond to 
a point of the set {X} . At such a point each of the functions 
Fn(£) has a derivative. Let £ = £„" <(•' and £ = & " > £ ' be 
points corresponding to points of the set {X} between which 
Fn(Ç) has a constant derivative. If we set "h = h," — %" — £' 
or h = hn" =£» / ; -"£', the value obtained for the difference 
quotient [F(i;'+h) — F(l;')]/h is in one case not greater 
algebraically than D^Fn{^f) and in the other case not less 
algebraically than D^Fn(^). Since lim K' = lim A„'" = 0, it 

* In special cases, however, this may happen. In the case of the func­
tion previously studied by the author, cited above, it can readily be shown 
that at each of the everywhere dense set of maxima (given by # = />/3n, 
where n is any positive integer and p any odd positive integer less than 
3n) the difference quotient becomes positively infinite on the left and 
negatively infinite on the right, while at the minima (given by the re­
maining values of x of the form p/3n in the open interval 0 < J C < 1 ) the 
difference quotient becomes negatively infinite on the left and positively 
infinite on the right. For x = 0 and x = 1 the difference quotient becomes 
positively infinite. The coordinates of the extrema are here given for the 
function as defined in the earlier paper. It is readily verified that the 
properties stated regarding the behavior of the difference quotient are pre­
served (in this case) by the transformation described in the present paper. 
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follows that this difference quotient can approach a limit only 
if D$Fn(%

f) approaches a limit as n becomes infinite. This, 
however, is never the case. In the ratio D^Fn+i(^) / D^Fn(^

f) 
neither the numerator nor the denominator is zero and neither 
approaches zero as a limit. Moreover for any n this ratio 
has either the value — 1 or else is greater than l + § , and so 
cannot approach the limit unity, as it would if D$Fn{%') 
approached a limit. Hence the difference quotient 
[F(£f+h) — F(£')]/h cannot approach a limit. 

This completes the proof of the theorem for the case in 
which either f (a) £ƒ(*) £f(b) or f(b) ^f(x) S f (a). The proof 
can be extended to the general case immediately by dividing 
the interval I into a finite or denumerably infinite set of 
subintervals, each of which satisfies the above condition, and 
then applying the above reasoning to each such subinterval. 
This subdivision of I can be accomplished by choosing as 
the first subinterval the interval between points at which 
f(x) attains its extreme values. In case these values are 
attained at more than one pair of points we may choose one 
particular pair by means of the device used in the similar 
situation for the choice of X\ and X2. We then apply this 
method to the remaining interval or intervals and continue 
the process indefinitely, or until we have exhausted 7. 
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