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Dividing out the factors (1 — 20m3 — 8w6)2(8m3 + l ) 3 , to which 
correspond special cubics, we obtain an equation of degree 
24. The 24 cubics corresponding are exactly the 24 previously 
mentioned and we have proved that a necessary and suf­
ficient condition that a non-special cubic have its (Hessian)s 

coincide with itself, is that its Hessian be projectively equivalent 
to itself. 
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A PROOF OF T H E FUNDAMENTAL T H E O R E M 
OF ALGEBRA* 

BY I. M. SHEFFERf 

1. Introduction. The number of proofs given of the funda­
mental theorem of algebra is large. Perhaps for that very 
reason still another proof may not be unacceptable. The one 
that is offered here is not "elementary," since it makes use of 
some general results in analysis. Yet it may be termed 
simple, and may be of interest. It is our hope that this proof, 
which is believed to be new, may, with no great embarrass­
ment, take its place in the family of proofs that every alge­
braic equation has a root. 

2. The Proof. We consider the equation 

(1) akx
k + ak-ix

k~l + • • • + aix + a0 = 0, (ak ?£ 0,& >0) . 

There is no loss in generality in supposing tha t j a i ^ O ; and, 

* Presented to the Society, September 6, 1928. 
t National Research Fellow. 
% For suppose ai = 0. Make the substitution x=y-\-a. We obtain an 

equation in y, in which the coefficient of y is a polynomial in a of degree 
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by dividing through by ah we can always make the coefficient 
of x unity. We then take a\ = 1. Let us replace the constant 
term a0 by —X: 

(2) akx
k + ak-ix^1 + • • • + x - X = 0. 

We shall prove that (2) has a root for every X. For X = 0 
we have a root x = 0. Let us assume that x, considered as a 
function of X, can be expanded in a power series about the 
origin (with no constant term) : 

00 

(3) *(X) = 2>„X". 
n = l 

If we substitute (3) into (2), and equate coefficients of like 
powers of X, we find for xi, x2) • • • , the series of equations 

Xi = 1 , X2 = P2 O l ) , #3 = P*(*l9 X2), ' ' ' , 

Xn -LnKXl) j Xn—l)) > 

where the P ' s are polynomials in their respective variables; 
and these permit us to determine, step by step, and uniquely, 
Xl) X2f , Xn j * ' ' • 

The series (3) has a non-zero radius of convergence. One 
method of proof is to determine suitable inequalities for 
\xn\. But it is simpler to appeal to the theory of implicit 

functions. 
Denote the left hand member of (2) by FÇk; x). We have 

F(0; 0 ) = 0 , dF(0;0)/dx= 1^0 ; consequently, in a sufficiently 
small neighborhood of X = 0 (in the X-plane), there exists a 
unique analytic function x(k) with #(0) = 0 , which when put 
into (2) makes (2) an identity in X. This function will 
have a convergent power series expansion, which by the 
uniqueness of the coefficients xn, must coincide with (3). 

For every X inside the circle of convergence of (3), x(X) 
is a root of (2). If (3) converges for all* (finite)X, then (2) 

& —1, and since we know (by elementary algebra) that an equation of 
degree k—1 cannot have more than k — 1 roots, it follows that a can be 
chosen so that this coefficient is not zero. 

* This will be the case when k = 1. 
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has a root for every X, and the desired theorem is established. 
Let us then consider the contrary case, where the radius of 
convergence, r, is finite; and let C denote the circle of con­
vergence. On C, x(\) has at least one singular point. Let 
X = X' be such a singularity. 

Interior to C, x(\) is bounded. For suppose the contrary. 
Then there will exist an infinite sequence of values Xn, with 
|Xn I <r, such that lim \x(Kn) | = °° . But |X | being bounded, 

for \x I sufficiently large the dominant term in the left hand 
member of (2) is |afc#*|, so that for n sufficiently large, 
x(kn) cannot satisfy (2); a contradiction. 

I t follows that there exists an infinite sequence Xn, with 
|Xn I O , such that lim X„ = X' and such that lim x(\n) exists.* 

Call this limiting value x1. Since X=Xn, x = x(\n) satisfy 
(2), therefore x' is a root of (2) for X=X'. 

We must then have dFÇK; x)/dx = 0 for (X; #) = (X'; xf). 
For if not, then the implicit function argument tells us that 
in a sufficiently small neighborhood of X=X' there is a unique 
analytic function â;(X) with x(k')=x', such that x = x(\) 
satisfies (2) identically. This function must be an analytic 
continuation of #(X).f But this means that X' is not a 
singular point of x(K); a contradiction. 

Now the condition dF(K; x)/dx = 0 does not involve X; 
it is in fact an algebraic equation in x of degree k — 1. Such 

* We use Weierstrass' Theorem on an infinite set which is bounded. 
t A detailed argument is as follows: By the implicit function theorem 

there exist two positive numbers 5, e such that for every X in the X' -region 
IX' — XJ < 5 there is one and only one x in the ^'-region |x ' —x| < e which 
satisfies (2) (for X = X' the value of x being x'); and this correspondence 
between X and x in the regions considered constitutes an analytic function 
£(X). Now the X'-region overlaps with the region of convergence of (3). 
Hence for n sufficiently large we shall have \n in the X'-region and x(\n) 
in the ^'-region, and this requires that #(Xn)=x(Xn). Now about this 
point X = Xn (and for the value x — xÇKn))} we can reapply the implicit func­
tion theorem. In a sufficiently small neighborhood of X = Xn we find a unique 
analytic function of X taking on the value x(\n) at Xn ; and this function of 
course coincides with £(X). But x(\) is analytic in a sufficiently small 
neighborhood of Xn, and has there the value #(X„), so that we must have 
x(\) ss£(X) in the neighborhood of Xn. 
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an equation cannot be satisfied by more than k — 1 values of 
x, so that (as we see from (2)) there cannot be more than 
k — 1 singular points X on C. We may then by analytic con­
tinuation follow the function x(\) across C; and for every X 
in the circle of convergence of each continuation, x(\) will, 
by the principle of permanence, be a root of (2). 

The preceding arguments apply to these new circles of 
convergence, so that we can extend the function x(\) 
throughout the entire (finite) X-plane, with the exception of 
a finite number of singular points. And at each non-singular 
point X, x(\) is a root of (2). But also at each singular point 
we have a root.* The theorem is thus established. 

3. Remark, A previous argument can be used to show that 
in every bounded X-region, x(\) is bounded. This is true in 
particular in the neighborhood of the singularities of #(X). 
In consequence, the singularities^ of x(K) are branch points 
at which the function remains finite. For, the only other pos­
sibilities are that a singularity is either a pole or an essential 
singularity (whether or not also a branch point) ; but in 
either case there would exist an infinite sequence of points X 
approaching the singularity, for which \x(X) | would ap­
proach infinity, and this contradicts the boundedness of 
*(X). 

PRINCETON UNIVERSITY 

* The argument used for X = \ ' on C applies, 
t Tha t is, in the finite plane. 


