
T H E THANKSGIVING M E E T I N G OF T H E 
SOUTHWESTERN SECTION 

The twenty-first regular meeting of the Southwestern 
Section was held at the University of Kansas on Saturday, 
December 1, 1928. The total attendance was forty-seven, 
including the following twenty-three members: 

N. L. Anderson, Ashton, Wealthy Babcock, Florence Black, Brenke, 
Gaba, Garrett , Harshbarger, Hyde, Louis Ingold, Kempner, Luby, 
McShane, U. G. Mitchell, Mossman, O. J. Peterson, Richert, Roever, G. W. 
Smith, Stouffer, J. S. Turner, J . J . Wheeler, Wyant . 

Professor Mitchell occupied the chair, being relieved 
during the morning session by Professor Roever. The morn­
ing session was devoted to the reading of the papers listed 
below. During the afternoon session Professor A. J. Kempner 
gave a special lecture by invitation of the program committee 
on The development of the analytical theory of numbers in the 
present century. 

The titles and abstracts of the papers read are given below. 
The papers of Altshiller-Court, Reid, and Whyburn were 
read by title. 

1. Professor Louis Ingold : Generalization of the tensor laws 
of transformation. 

In the theory of tensors two types of transformation of sets of quantities 
are employed, namely, the covariant, and the contravariant laws of trans­
formation. These involve the first derivatives of the new variables with 
respect to the old, or of the old with respect to the new. In connection with 
certain invariant expressions there occur other types of transformation 
involving derivatives of one set of variables with respect to the other, of 
order higher than the first. These are the generalizations considered in this 
paper. 

2. Miss Nola L. Anderson: First normal spaces in Rieman-
nian geometry. 

If a space is defined by a general vector function of the coordinates 
u\ say /(u1, u2, • • • , un), the first derivatives ƒ»• = df/du1 of ƒ at each point 
determine the tangent space. Every vector orthogonal to the tangent space 
is called a normal vector. A normal vector expressible in terms of the tan­
gent vectors ƒ» and their derivatives is called a first normal. It is the pur-
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pose of this paper to investigate the relations connecting various first 
normal vectors invariant under change of coordinates. Some of these nor­
mals are independent of any loci passing through the point under considera­
tion while others are associated with curves, surfaces or other loci passing 
through the point. The details are given only for two- and three-dimen­
sional spaces. 

3. Professor U. G. Mitchell: Note on Mersenne numbers. 
At the February 1925 meeting of the Kansas Section of the Mathemati­

cal Association of America the author presented a paper summarizing the 
results previously obtained and the chief methods employed in factoring 
Mersenne and Fermât numbers. A simple method of at tack based upon 
geometrical considerations was suggested and some results obtained by the 
method were also presented. In the present note is shown as a further 
result obtained by the method the fact that 21321—1 has the factor 7927, 
proof of which is established by two independent series of congruences. 

4. Professor W. C. Brenke: On polynomial solutions o f a 
class of linear differential equations of the second order. 

In this paper certain polynomial solutions of the differential equation 
py'"'-\-gy''-\-rny = 0 are considered, when p and q are polynomials in x and 
rn a function of n alone. In particular, simple formulas for the normalizing 
constants and generating functions are obtained, the latter by an applica­
tion of the Laplace expansion as used by Darboux for the Jacobi poly­
nomials. 

5. Professor Nathan Altshiller-Court: Some tetrahedral 
complexes. 

A tetrahedral complex is defined as the totality of straight lines which 
cut the four faces of a tetrahedron in four points having a constant an-
harmonic ratio. The author proves several theorems on such complexes. 

6. Professor W. H. Roever: A geometric representation of a 
line integral. 

By regarding the differential expression Pdx+Qdy as defining surface 
elements in space which cut from a vertical cylindrical surface of directrix 
c in the xy plane lineal elements which have for unions a one-parameter 
family of curves on this cylindrical surface, it is possible to give a very 
simple geometrical representation to the value of the line integral 
fcPdx+Qdy and to see geometrically under what conditions this line in­
tegral is zero for a closed path. 

7. Professor Wealthy Babcock: On the geometry associated 
with certain determinants with linear elements. 

If the linear elements of the determinantal form in three variables are 
set equal to zero, each represents a straight line. The geometry of these 
lines may be studied by placing restrictions on the invariants and covariants 
of the linear forms which are the elements of the determinant. Certain 
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facts concerning the geometry of the lines which are obtained from the 
elements of the determinantal form of the second order and their relation 
to the conic, and of the lines which are obtained from the determinantal 
form of the third order and their relation to the plane cubic curve were 
brought out in this paper. From the determinantal form of the equations 
of plane curves, some theorems concerning the generation of plane curves 
of order n by projective pencils of curves of order less than n, may be 
readily proved. 

8. Professor J. S. Turner: The f adoring of large numbers by 
means of positive determinants of Seelhoff type. 

This is a continuation of former papers (this Bulletin, vol. 37, pp. 163, 
399). A list (probably complete) of 14 positive determinants D is given, 
for which : (a) D contains no square factor, (b) T2—D = lf (c) there are two 
cycles of reduced forms in each genus. The method of applying these de­
terminants to the factorization of large numbers is explained. The prime or 
composite character of a number of 10 digits can thus be determined in two 
or three hours. 

9. Professor J. S. Turner: The expression of numbers from 
12,000 to 30,000 in the form w3+x3 + 2y3 + 2z\ 

The computation was undertaken at the instance of Professor L. E. 
Dickson as part of a project to verify von Sterneck's table (Wiener Sitz-
ungsberichte, vol. 112, Ua, (1903), pp. 1627-66) showing the number of 
cubes required to represent all numbers ^40,000. The method adopted is 
described in the American Mathematical Monthly (vol. 35 (1928), p. 113). 
The verification, now completed, that every number following 8041 up to 
40,000 is the sum of six cubes is of the greatest importance, since this result 
is employed in the proof of Waring's theorem that every number is the sum 
of nine cubes. In addition to £ = (111111111) the following theorems (L. E. 
Dickson, American Mathematical Monthly, April, 1927, p. 177) are rendered 
independent of von Sterneck's table: £ = (11111112) (that is, Theorem 
II I ) , £ = (1111114), where £ is any positive integer ^40,000. These theorems 
are likewise true of the forms derived from them by partitioning 2 and 4. 

10. Professor E. B. Stouffer: A canonical expansion associ­
ated with developable surfaces. 

The author obtains a canonical expansion for the equation of a develop­
able surface by means of the fourth order differential equation associated 
with the edge of regression and also determines the geometrical location of 
the vertices of the associated tetrahedron of reference. All the work is far 
more simple than when the developable surface is treated as a special case 
of a curved surface, the method which has been used previously. 

11. Mr. W. T. Reid: Countable differential systems con­
taining a parameter. 

A system of integral equations of the form y(x, M) = foxA(t, n)y{t, fx)dt 
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+a(jt*) is considered, where A(x, ^) = {Aij{x, /*)) is a square matrix with a 
countable number of rows and columns, y(x, /x) = (yi(x, /x)) and a(/x) = (at-0x)), 
(i, j — 1, 2, • • • ). We will call a solution of this system a set of functions 
yi(x, /x), * = 1, 2, • • * , each of which is absolutely continuous in x for fixed 
value of M and such tha t y(x, /x) is a vector in Hubert space. If (1) for 
each xx on Lf L\</x<Z,2, Aij(x, /x) is a measurable function on J , 0 ^ x ^ l ; 
(2) a(/x) for /x on L is a single valued vector in Hubert space; (3) there exists 
a non-negative summable function <f>(x) on X such that for each vector co 
in Hilbert space \A(x, /X)CO | S<f>(x) |« | ; then there exists a unique solution 
of this system on XL. Sufficient conditions are given for the solution 
y(x, /*) to be continuous in (x, ju) on XL, and also to possess a partial deriva­
tive with respect to the parameter ix. The above system is also considered 
for each element of the matrix A (x, /x) analytic in the parameter tx. 

12. Mr. W. T. Reid: Matrix solutions of countable differ­
ential systems and their adjoints. 

If A (x) is a square matrix in a countable number of dimensions limited 
by a summable function <f>(x) on Xia^x^b, tha t is, for every pair of points 
£ and rj, of Hilbert space and for every n, E " ^ ^ « W ^ I S<f>(x) \t I \v |> 
then there exists a matrix Y(x) of absolutely continuous functions satisfy­
ing equation (1): Y'(x) —A(x) • Y(x) "almost everywhere" on X. It is 
proved tha t if Y(x) is limited at some point of X, then Y(x) is limited 
uniformly on X, Similarly, there exists an absolutely continuous matrix 
Z(x) satisfying the adjoint equation (2): Z'(x) — — Z(x) • A{x) "almost 
everywhere" on X, and if Z(x) is limited at a point of X, then it is limited 
uniformly on X. If Y(x) is limited and at a point of X possesses a unique 
limited reciprocal, then Y(x) possesses on X a unique, limited, absolutely 
continuous reciprocal which is a solution of (2). We will call a matrix 
solution of (1) a limited, absolutely continuous matrix which satisfies (1) 
"almost everywhere" on X and has a unique reciprocal. If Y(x) is a matrix 
solution of (1) the most general matrix solution is Y(x) • C where C is a 
constant limited matrix possessing a unique reciprocal. Furthermore, if 
Z(x) is a matrix and Z(x) • Y(x) = C on X, where Y(x) is a matrix solution 
on (1) and C is a constant matrix possessing a unique reciprocal, then Z(x) 
is a matrix solution of (2). 

13. Professor G. T. Whyburn: On regular points of con­
tinua and regular curves of at most order n. 

This paper appears in full in the present issue of this Bulletin. 

E. B. STOUFFER, 

Secretary of the Section 


