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APPROXIMATE SOLUTIONS OF CERTAIN 
GENERAL TYPES OF BOUNDARY 
PROBLEMS FROM THE STAND­

POINT OF INTEGRAL 
EQUATIONS* 

BY ROSE WHELAN 

1. Introduction. The principle of Rayleighf, which is used 
by physicists to obtain practical solutions of certain boundary 
problems, assumes that the system under consideration may 
be replaced by an approximating algebraic system so chosen 
that the difference between the solutions of the two systems 
is negligible. It is evident that the practical value of this 
principle depends not only on the possibility of choosing 
an approximating system which can be easily solved, but 
also on the possibility of estimating the order of difference 
between the solutions. 

In a paper published in 1923, M. PlancherelJ presented a 
justification of the use of the difference system as an ap­
proximating system for a second order self adjoint linear 
differential equation with simple boundary conditions. He 
does not discuss the order of approximation of solutions. 
Such a discussion has been given by N. Bogoliouboff and 
N. Kryloff.§ R. Courant, || in a paper which appeared in 
1926, showed that certain integro-differential boundary 
problems could also be approximated by the method of 

* Presented to the Society, September 7, 1928. This paper is an ab­
breviated version of a thesis submitted to Brown University in candidacy 
for the degree of Doctor of Philosophy, 

t Lord Rayleigh, Theory of Sound, vol. 1, pp. 89-96. 
% M. Plancherel, Bulletin des Sciences Mathématiques, (2), vol. 47 

(1923), pp. 153-160, 170-177. 
§ N. Bogoliouboff and N. Kryloff, Annals of Mathematics, (2), vol. 

29 (1928), pp. 255-275. 
|| R. Courant, Acta Mathematica, vol. 49 (1926), pp. 1-67. 
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difference equations. In this paper we use an essentially 
different method.* The class of problems to which it can be 
applied is not restricted to the class of problems that origin­
ated in the calculus of variations, with which Courant has been 
concerned. In some respects, however, the method used by 
Courant is more general since it can be applied to non-linear 
as well as to partial differential boundary problems. 

2. Preliminary Theorems: Approximate Solutions of the 
Fredholm Integral Equation.^ We obtain for reference in this 
and later sections an estimate of the differences between the 
characteristic numbers of the Fredholm integral equation 

041) u(x) + X I k(x, s)u(s)ds = f(x), 
J a 

and those of 

(A2) u(x,e)-{-\ I k(x,s,e)u(s,€)ds = f(x,e), 
J a 

where, in the region a^l^b, 0 ^ € ^ e 0 , the functions 
k(x, 5, e) and k(x, s) are bounded and integrable (in the 
Lebesgue sense) and 

k(x,s,e) - k(x,s) = 0(e) ; f(xye) - f(x) = 0(e) 4 

If €0 is sufficiently small, then 

k(x,s,e) — k(x,s) = eh(x,s,e) 

where h(x, s, e) is uniformly bounded in the region a^x
s^by 

0 ^ € ^ € 0 , and/(x , e)— f(x) = e/^(x,e),where h(x, e) is uniformly 

* This method was suggested by Professor J. D. Tamarkin to whom 
the author is indebted for advice and criticism during the preparation of 
this paper. 

t E. Schmidt, Mathematische Annalen, vol.63, pp. 467-472, and vol. 
64, pp. 161-174; H. Bateman, Proceedings of the Royal Society, A, vol. 
100, pp. 441-449; F. Tricomi, R. Accademia dei Lincei, vol. 33, sem. 1, 
pp. 483-486, and vol. 33, sem. 2, pp. 26-30; R. B. Adams, Thesis in Candi­
dacy for the degree of Doctor of Philosophy submitted to Radcliffe College, 
1921; H. Block, Lunds Universitets Ârsskrift, N. F. Afd. 2, 7, no. 1, (1911); 
G. C. Evans, American Mathematical Monthly, vol. 34, pp. 148-150. 

X By definition/(e) =0(€a) if f(e)/ea is bounded. 
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bounded in the region a^x^b, 0^eSe0. The integral equa­
tion 

(1) w(#,p,e) + X I k(x,s,p,e)u(s,p,e)ds = f(x,p,e) 
J a 

in which 
k(x,s,p,e) = k(xys) + p/j(a;,5,€), 

f(x,p,e) s / ( « ) + ph(x,e), 

reduces to 041) when p = 0 and to (A2) when p = e. For any 
finite value of p, the Fredholm determinant and the Fredholm 
minors of k(x, s, p, e) exist and are analytic for all finite 
values of X. Also since k(x, s, p, e) is analytic in p and 
possesses a resolvent for the particular value p = 0, the 
Fredholm determinant D(\, p, e) and the Fredholm minors 

( X\ * * * Xfi \ 

,X,p,e), Ou = 1,2,3, • • • ) , 
Si - - - s» / 

are analytic for all finite values of p, and are not identically 
zero.* 

Let X=X0 be a characteristic number of multiplicity p 
and index gf associated with the kernel k(x, s, 0, e) =&(#, s). 
Then* 

(2) Z>(X,0,e) s Z)(X) = (X » XoW(X), d(\0) * 0 ; 

and 

(3) D f ' " ' ^ ^ ^ ^ ' " ^ 
I X\ ' ' Xu \ 

= (X-X0)«-"<U , X ) , ( M = 1 , 2 , • • • ,<? ) , 
\Si- - - Sp / 

where, in general, 
/xi - - - x» \ 

dJ , X o ) ^ 0 . 
\Si' ' ' S» / 

* See, e.g. J. D. Tamarkin, Annals of Mathematics, (2), vol. 28 (1927), 
pp. 127-152. 

t A characteristic number is said to be of index q if there are exactly 
q characteristic functions associated with it. 

J These formulas follow as a direct consequence of the assumption 
that X0 is a characteristic number of multiplicity p and index q. 
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Also, for all values of /*, including ju = 0,* 

( xi • • • x„ \ 

,X,p,€l /dp 
si • • • sM / 

-Z(-D*f,*(**,*/,«)^( ,X,P,«) 

\Si • • • 5M / J 0 

(4) - x E *(*<,*,€)/>( ,x,P,«W 

~ X 2 u ^)( „ ,X,P,€ )*(£,*>«)<# 

- X2 f *tt,17,€)Z?f ^ " " ' * ' \ X ^ f W * . 
•/a \Si' ' ' Spt / 

Assume that there is no characteristic number of k(x> s) 
other than X=X0 within or on the boundary of the region 
I X—Xo | ^5i. The analytic function P(X, p, c) is represented 
in the region |X—X0 |é8i; 0 ^ p ^ S 2 < l by the convergent 
power series 

00 

(5) D(X,p,e) - E Aa.p(€)fr - * o ) V , | Aatfi(€) \£A, 
a,/3«=0 

where -4 is a finite constant. 

It follows from (2), (3), and (4) that 

Aa,o = 0, a < p , .4«,0 = 0, a + ft < q , 4̂„,o F* 0 , 

and, in general, 

-4-ji 5* 0, a + j8 - q. 

We shall assume for the present that Aq^i^^O and, by 
collecting terms of the same degree, express (5) in the form 

* G. C. Evans, loc. cit. 
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D(X,P,«)-Z)(X) = 

+ K,!(x - XO)«P + 8̂_i.2(x - x0)«-y + • • • + ^o.,,^1] 
+ ••• . 

Consequently, for X—X0 and « sufficiently small,* 

I D(X,e) - D(X) I < 2Ae[ |X - X0| + e]«"». 

Hence 

where 

I *(X,«) J < 2Ae[ |X - Xo I + €]«-* I Z>(X) | ~K 

Consider a circle (7) about X0 of radius r^5i . Since d(X) 
in (2) can not vanish on (7), then on (7) \ d(\) | ^ ^o"1 > 0 
where d0 is a constant different from zero. If now we choose 
r so that 

(6) 2Ad#[r + e]*-^ =* C < 1 

then on (7), |^(X, e) | <1 and the equation Z>(X, e) = 0 will 
have the same number of zeros within (7) as P(X) =0. It is 
readily seen that (6) implies r = 0(einp~q+l)). 

THEOREM 1. If X=Xo is a characteristic number of (Ax) 
of multiplicity p and index q, then for a fixed e sufficiently small 
(A2) will possess exactly p characteristic numbers X=Xo,i(€) 
( i - 1 , 2, • • • , p) such that Xo-Xo.^e) *:0(€I/<P-«+I>) at least. 

By an analogous method it is possible to discuss the special 
cases that arise when Aq~i,i = 0. We shall find that if any of 
the coefficients Aatp, a+j3 = g, are different from zero, then 
r = 0(e1/(p""«+1)) ; if all of the coefficients Aa,0,OL+j3 = <Z> vanish, 
but one of the coefficients A<*,$, a+/3 = g + l, is different from 
zero, then r = 0(elKp~q)); if Aa,$, a+^<q+2f vanish, 
but one of the coefficients Aa,py a+fi — q+2 is different from 
zero, then r = 0(€1/(p+«~1)); and so forth. 

*Z?(X, 4 f ) = 0 ( x , • ) . 



110 ROSE WHELAN [Jan.-Feb., 

THEOREM 2. If {0/0*0 }(/ = l, 2, • • • , q) is a normalized 
set of characteristic functions of {A^) associated with the 
characteristic number X=X0 and <£(#, e) is a normalized char-
acteristic function of (A 2) associated with the characteristic 
number X=X0,i(e), then there exists an approximately normal­
ized* linear combination^)^ c/(€)<foO*0 suc^ that 

* ( * , « ) - ! > / ( « ) * / ( * ) - o(6i/<*-*+») 

Consider the equation 

(7) <l>(x)€)+\o,i(€) I k(x,s,e)4>(sfe)ds = 0, 
• ' a 

where 

I I 0(x,e) |2J# = 1. 

This may be written as 

(8) 0(*,e) + Xo ƒ *(*, J)0(j,e)& = 0(*,€) , 

where 

»& 
J a 

+ [Xo - X0>t(e)j I £(>,s, €)<£(*, <D<fc. 

Since 

Xo,,(e) - Xo == OCc1/^-^1)) , k(x,s,€) - *(*,*) = 0(c) , 

and since k(x, s, e) is bounded and <j>(x, e) is normalized, we 
have Û(*,e) = 0(e1/(p-«-f l)) at least. 

But (8) is a non-homogeneous equation in which X0 is a 
characteristic number and </>(x, e) is a solution. Accordingly, 
if R(x, s) is the pseudo-resolvent of k(x, s), then 

* A function œ(x, «) is said to be approximately normalized if 
ƒ«!«(*, e)|2tfs = l-|-7?(e) where ^(c)-^0 as €-*0. 
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s*b q 

<t>(x,e) = Q(x,e) — X0 I R(x>s)ü(sye)ds + ^2cj(e)<t>3{x). 

Since R(x, s) is bounded, 

(9) *(*,€) = & « * * ( * ) + *(*,«), v(x,e) = 0(«l'<*-«+l>), 

which yields the result 

• 6 1 Q 

•J a I j = l 
dx=*l + «(*,«), «(*>«) = 0(cl'<*-<ri-i>). 

THEOREM 3. Ifu(x) represents a solution of (Ai) correspond-
ing to a fixed value of the parameter which is not a characteristic 
number, then for e sufficiently small and the same value of the 
parameter there is a solution u(x} e) of (A 2) such that 

U(X,Û) — u(x) = 0(e). 

If X is not a characteristic value of (A 1), then from Theorem 
1 it follows that for e sufficiently small X is not a characteristic 
value of (^2). We may write (A2) as 

«(#,*) + X I ktx,s)u(s,e)ds = g(x,e), 
J a 

(x,e) = f(x,e)—\ I [&(#,$,€) — k(x,s)]u(s}e)ds . 
J a 

Let f(xf s, X) represent the resolvent of k(x, s). Then 

«(*,€) + X I f(>,S,X)gO,e)<fc = g(*,e), 

or 

w(#,e) + X I i(x,s,\,e)u(s,6)ds = g(^,X^) 
J a 

where 
f(#,s,X,e) = &(#,$,€) — &(#,s) 

g(* ,X,c) = /(*,€) - X J t(x,s,\)f(s,€)ds. 
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Since f(#, s, X, e)=0(e), the Neumann series representing 
the resolvent of f(x, s, X, e) will converge and for e suf­
ficiently small will also be 0(e). Consequently, u(x, e) is 
bounded. 

If we set v(xye)=u(xf e)--u(x), then from (Ai) and (^2) 
it follows that 

v(x,e) + X I £(#,sM$,e)<fo « rç(#,X,a), 

where 

v(x,\,e) =ƒ(*,€) ~ ƒ(*) 

X I [&(#,s,e) — &(#,$)]«($,e)ds = 0(e). 

Hence 

»(#,e) = 7?(#,X,e) — X I f(#,s,X))?(.?,X,e)d,j = 0(e), 

which proves Theorem 3. 

3. Reduction of the Differential System and the Associated 
Difference System to Fredholm Integral Equations. We con­
sider the differential system represented in matrix notation* 

L(Y-)+*Q(x)Y- - F ( * ) . f 

(BO U(Y') m WoY(0)' + WiY(l)- = 0 , (OS x g l ) , 

L(Y-) ~dY-/dx-A(x)Y-y 

where A(x), Q(x), and F(x)< are matrices whose elements 
satisfy a Lipschitz condition; Wo and PFi are matrices of 
constants ; and X is a scalar parameter. 

Let the interval (0, 1) be divided into m equal parts by the 
points tf0 = 0, #1, #2» • • • 9 Xm^l. Then associated with the 
system (J3i) is a difference system 

* Throughout the remainder of this paper capital letters—with the 
single exception of O—will be used to represent matrices with n rows and 
n columns. A dot following a capital indicates that the columns of the 
matrix are identical. 



1929] CERTAIN BOUNDARY PROBLEMS 113 

L(Yr) + \Q(xi)Yr - / ? ( * , ) • , 

( 5 0 U(Yr) m WoYo- + WiYm- - 0, (J = 1,2, • • • , m), 

L(Yi-) m A F w / A * - i l (*i)Fr ; AF,- = Yl+1- - F r , 

Ax = #i+ i — ffg = 1/»W . 

We may assume without loss of generality that X = 0 is 
not a characteristic number of either (J5i) or (52). Then for 
an arbitrary F(x) • there exists a unique solution of the system 

(10) K ' K ' (0 £ * S 1), 
U(Y-) = 0, 

and this solution can be expressed in the form 

y ( a ) . = j GO,s)F(s)-ds, 
Jo 

where G(#, s) is called the Green's matrix of the system and is 
given explicitly by the formula* 

G(x,s)=G(x,s) - Yk(x)[U(Yk(x)]-lUl<5(x,s)], 

where 

Hence 

(11) Y(x)- +\ f K(x,s)Y(s)-ds = ? ( * ) . , 

where 

K(x,s) =G(x,s)Q(s), F(x)- = J G(x,s)F(s)-ds, 

is equivalent to (5i) . In the ordinary notation, the system 
(11) represents a system of n linear integral equations 

* Birkhoff and Langer, Proceedings American Academy of Arts and 
Sciences, vol. 58 (1923), pp. 51-128. 
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X* n 

J^ki,j(x)s)y]{s)ds = fi(x), 
(12) 

n 

ki,j{x,s) = ]Cgt,a(#,s)?«,y(s), (*J = 1>2> • • • , » ) . 

If we define 

x — i + 1 
£(#,s) = **,ƒ(# — i+1, s— j+1), 0 < < 1, 

5 - j + 1 
ƒ<» = fi(x- i+ 1), 0 < x - i+ 1 < 1, 

then 

J» n 

k(x,s)y(s)ds = f(x), 
o 

where 3>0*0 =3>»(# —i+1) , 0 < * - i + l < l , is equivalent to 
(12).* 

I t is also possible by means of a Green's matrix to reduce 
the system (B2) to a single Fredholm integral equation. For 
this purpose we shall need the following lemmas, the proofs 
of which do not present any difficulty : 

i. If Yh
(m)(xi), (/ = 0, 1, 2, • • • ,m),isa solution of the system 

(14) L{Yl) = 0, ( / = 1,2, . . . , m ) , 

and if] | F//m)(l) | 9e 0, there exists a number ra0 such that for 
all m>m0, \Yh^(xi) j ^ O , (7 = 0, 1, 2, • • • , m). 

ii. If | Yh
im)(l) | 7^0, then for a sufficiently large m the most 

general solution of (14) is YAm)(xi)C, (/ = 0, 1, 2, • • • , m), 
where C is a matrix of constants. 

iii. If F(m)(xj), (̂  = 0, 1, 2, • • • ,m),is a particular solution 
of the system 

(15) L(Yi) =F(xt), (1= 1,2, . . . , m>, 

* I. Fredholm, Acta Matematica, vol. 27 (1903), pp. 378-379. 
t The notation | .4 | is used to indicate the determinant of the matrix 

A. 
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and if \ YAm)(\) | 5^0, then for m sufficiently large 

Y^(xi) = F <"0(*,) + Yr(xt)C, (I = 0 ,1 ,2 , • • • , tn), 

is the most general solution of (15). 

iv. A particular solution of (15) is 

m 

7<*>(*i) = Jl&m)(xi,Xk-iMxk)Ax, (/ = 0 ,1 ,2 , • • • , » ) , 
k=*l 

where 

G<m)(xi,Xk-.i) 1 - m 
F ^ ( x O [ F ^ > ( ^ _ ! ) h S k £ / , 

^ . ^ ( ^ [ ^ ^ ( ^ l ) ] - 1 , É > f . 

By an argument closely analogous to that used by Birkhoff 
and Langer* for the differential system, it is readily proved 
that there exists a unique solution of the system 

(16) X ( F r ) = F ( * , ) . , U(Yr) = 0, ( / = 1,2, • • • , m), 

and that this solution can be expressed in the form 

m 

F<*>(*,)- = £ G<*>(*,,*^0*(**)-A*, (/ = 0 ,1 ,2 , • • -, tn), 

where G(m)(xit Xk-i) is called the Green's matrix of the 
system and is given explicitly by the formula 

G<*>(*i,*ib-.i) =G(m)(xhxk-i) 

- F^)(^){^[F^>(^)]}-1t/lG^>fe,^_1)], 
(Z = 0 ,1 ,2 , • • - , ! » ; * = 1,2, • • • , m). 

Consequently the system 

m 

(17) F<»>(*,). +\yZG^(xhxk-l)Q(xk)Y^(xk)'Ax^7^(xi)', 

where 
m 

is equivalent to (52). 

* Birkhoff and Langer, loc. cit. 
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On setting G(m) (#i, tf*-i) = G^m)(x,s) in the intervals 

Ix: xi-i < x < xi, (I — 1,2, • • • , m), 

I9 : xk~i < s < xk, (k = 1,2, • • • , m), 

and 

F^(xi)- =F<m)(x)-9 Q(xi) = ö ( m )(#) , F^>(»j). « F m ( * ) « , 

in the interval Ix, we reduce (17) to an equivalent system of 
integral equations 

(18) F<">(*)- + X f K^(x,s)Y^(s)-ds = F<->(*). , 

Z<™>(#,*) =G<m)(#,s)Q<m)(s). 

Then (18) is equivalent to 

(19) y^(x) + X f *<"»>(*,$)?<"»>(*)<& = / ( m ) (* ) , 
Jo 

where 

&<">(*,*) - *« . / (* - i + 1 , J - J + 1), 0 < * ~ * < 1 , 

y(m)(x) = 3>i<w)(# - i + 1) , 0 < x - * + 1 < 1 • 

As a final step it is necessary to estimate the difference 
between the kernels k(xt s) and k(m)(x, s). For this purpose 
we shall need the additional lemmas: 

v. If Ui(x) and U<L{X) are continuous matrices which, except 
at a finite number of points, satisfy the relations 

dUx/dx = A{x)Ux + Ql9 Ux(l) = Co, 

dU2/dx = A(x)U2 + Oj, Ut(l) « Co, 

where* A{x)<^a^; Oi<3C€i and Slt^t^ t\ and e2 being positive 
scalar s \ then 

* A<<B indicates that each element of the matrix A is less in ab­
solute value than the corresponding element of the matrix B. Similarly, 
A<<b indicates that each element of the matrix A is less in absolute 
value than the scalar b. 
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Ui(x) - U2(X) « (€i + €2)(*0°W*- l ) A o ^ . * 

vi. The elements of the matrices 

Yh(x)} [Yh(x)Y\ U[Yh(x)], {U[Yh(x)}~1 

are bounded ; the same is true of the elements of the matrices 

YhM(xi)y [Yi"K*i)]-l> U[Yt»>(xi)]9 {U[Yt»>(xi)]}~1 , 

ff|S<»>(*i,**-i)], (l - 0,1,2, • • • , m ; * - 1,2, . . . , » ) , 

/or m sufficiently large, t 

vii. YémK*ù ~ Yh(x) » 0(l/m) in Ix.\ 

Let the continuous matrix YAm)(x) be defined in Ix by the 
relation 

dY&*>(x)/dx = A F ^ ^ W ) / A ^ = ^(**)Fj, 

where F* = F*(m)(^/). Then 

dYh™(x)/dx = 4(*)F|f"»>(*) + Q<*»>(*)> 
where 

0(»>(») = A(xi)[YAm>(xi) - YhW(x)\ 

+ [A(xi)-A(x)]Yi«>(x). 
It is evident that 

0<">(*) - 0(l/m) . 

The lemma now follows as a consequence of (v). 

viii. G<m)(xi,Xk~i) —G(x,s) = 0(l/m) in Ix,I9. 

ix. I/[Frfm>(*i)] - U[Yh(x)] = 0(l/m). 

x. {U[Yh«*Kxt)]}-* - {U[Yh(x)]}-*=(Kl/m). 

* The method of proof is similar to that used in the case of a single 
differential equation. (Ch. J. de la Vallée Poussin, Cours d'Analyse In-
finiteésimale, vol. 2, éd. 4, p. 135.) 

t See Birkhoff and Langer, loc. cit. 
t -4(e) «0( € ) if each element of 4(e) is 0(t). 
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Combining lemmas (v) to (x) and using the fact that 
Q(x) and F(x)- satisfy a Lipschitz condition, we obtain the 
final lemmas: 

xi. G<m)(*i,**-i) -G(x,s) = 0{X/m) in Ix,I8. 

xii. K<™y(x,s) - K(x,s) = 0(l/m) ; 

k<m>(x,s) - k(x,s) = 0(1/m) ; 

ƒ<*>(*) - f{x) = 0(l/m). 

Equations (13) and (19) can now be treated by methods 
developed in §2. 

4. Reduction of the Integro-Differential System and the 
Associated Difference System to Fredholm Integral Equations, 
Let us consider the integro-differential system 

L(Y-) + \Q(x)Y- = F(x)> + f H(x,s)Y(s)-ds, 

(Ci) ° 
£/(F.) = 0, 

where L ( F ) , C / (F ) , Q(x)9 F(x)>, and X have been defined 
above, and H(x, s) satisfies a Lipschitz condition in (x} s). 

Associated with this system is a difference system 

m 

L(Yi-)+\Q(Xl)Yr =F(Xl)- + 2 > ( * i , * * ) r » . A * , 

(C ) *=° 
U{YV) = 0, ( / - 1,2, • • - , » ) . 

We can assume without loss of generality that X = 0 is not a 
characteristic number* of either (Ci) or the differential system 

* The discussion of characteristic numbers and characteristic func­
tions of a single integro-differential equation satisfying boundary condi­
tions, has been given by J. D. Tamarkin (Transactions of this Society, 
vol. 29 (1927), pp. 775-800), His results have been extended to a system of 
integro-differential equations by F. C. Jonah in a thesis to be submitted 
to Brown University in candidacy for the degree of Doctor of Philosophy. 
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(Bi). Since X = 0 is not a characteristic number of (G) , the 
system 

Z(F-) =F(x)- + f H(x,s)Y(s)-ds9 
(20; Jo 

U(Y-) = 0 , 

possesses a unique solution for an arbitrary F(x) • and this 
can be expressed in the form Y(x)- =for(x, s)F(s) • ds. The 
matrix T(x, s) is uniquely determined at its points of 
continuity and is called the Green's matrix of (20). It is 
readily seen that T(x, s) is given explicitly by the formula 

T(xys) = G(x,s) + f $(*,ÖG($,*)dÉ, 
Jo 

if $(x, s) is the résolvent of the matrix 71 (x, s), and 

Y(x)- = f H(x,s)Y(s)'ds + F(x)-, 
Jo 

(21) H(x,s) = f G(x,QH(i,s)di, 

F(x)- = f G(x,s)F(s)-ds. 
Jo 

Hence 

(22) F(*)- + X f r(*,s)Ç(«)F(j)-«fo = f r(*,s)F(*)-<fa 
•/ 0 Jo 

is equivalent to (Ci). 

Similarly, an explicit expression for the Green's matrix of 
the system 

m 

L(Yr) =F(xi)- + ^EHixiiXkMxù-Ax, 
k*~0 

(23) 
U(Yr) = 0, ( / = 1,2, • • • , « ) , 

can be obtained. Since X = 0 is not a characteristic number of 
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(Bi), then from Theorem 1 it follows that for m sufficiently 
large X = 0 is not a characteristic number of (52). Hence 

m 

Y^(x,) • = £ f fW(* , , ^F ( - ) ( i 4 ) • A* + J(xi) •, 

( f - 0 , 1 , 2 , ••• , « ) , 

m 

m 

?(*!)• = 2jG(w>(*i,**-i)F(**)-Aa?, 

or 
(24) F<w>(*)- = f F(m)(tf,s)F(m)00<fc + F< ">(*)• > 

Jo 
where 
#<m)(#,s) = H(xi,xk) in /*, / , , 

Jo 

F<w>(#) = I G^m)(^,5)F(w)(^)-^ ~F(xi)- in 7 *, 
Jo 

is equivalent to (23). 
In virtue of lemma (xi) and the assumption that H(x, s) 

satisfies a Lipschitz. condition, we have the lemma 

xiii. TI^(x,s) - H(x,s) = 0(l/m), 

y(«)(«). - y ( « ) . »o(i / fn) . 

In consequence of Theorem 1, since (21) has a unique 
solution, then for m sufficiently large (24) will also possess 
a unique solution. So, for m sufficiently large, there exists 
a resolvent matrix ^p(m)(#> s) associated with #(w)(#, s)f and 

F<*>(*). = f r<™>(*,s)F<™>(s)-(fc, 
•Jo 
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where 

r<->(*,*) = G<*»(x,s) + f $(w)(*,ÖG(,,l)të,*)<*e. 
J 0 

Hence 

(25) F<">(*). + X f T™(x,s)Q™(s)Y<m>(s)-ds 

= f T<m)(x,s)F<m>(s)-ds, 
Jo 

is equivalent to (C2), for Z<w. 
It is necessary to estimate the order of difference 

between the Green's matrices T(m)(x, s) and T(x, s). For 
this purpose we need the lemma 

xiv. $im)(x,s) — $(x9s) = 0(1/m). 

The resolvent matrices §(w)(*> s)> §(*> 5) a n d the kernels 
77(m)(#, s)t F(x, 5) satisfy the relations 

$(x,s) - H(x,s) = f ff(*,Ö$tt,*)# 
Jo 

= f $(x,QE(S,s)di, 

Jo 

= f $(,,,)(*,ÖB<->(|,*)#. 
• ' 0 

Let 

£<">(*,*) - £(*,*) - Fi<->(*,*) = 0(1/»), 

$<«>(*,*) - $(*,*) = U(m)(*»*). 

Then 

(26) 
u(->(*,«) - f #<""(*,£)U(m)(s,s)# + 5i«-»(*,*) » 

WK*,*) -Bp»(x,s) + f Hi<->(*,0$($,«)#-O(l/«). 
Jo 
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The equation (26) is equivalent to 

U<*>(*,5) = f ff(*,ÖU<">tt,5)# + $2(wi)(*,*) , 
Jo 

&!("°(*,*) = 5l("°(*,*) + f #!<->(*,£)U<">(£,*)#. 

But # (# , s) possesses a resolvent §(#, s). Hence 

Jo 
where 

Ht~)(x,s) = ffi<~>(*,s) + f CixMHWi^dS = 0 ( l / « ) , 
Jo 

{Wp)(*,*) = 5I<*>0M) + f $(*,ÖSi<~>ft,*)« = 0(l/m). 

But for m sufficiently large, the elements of §2
(w)(#> £), the 

resolvent matrix of u2
(w)(#> £), are bounded, and 

U<">(*,5) = f ©2(m)(«,Ög3(,,l)tt,^ + WK*,*), 
Jo 

whence 

U<~>(*,*) = 0( l /m) . 

In virtue of this lemma, 
T<m\x,s) - r(*,$) = 0(l/m). 

We have shown that the systems (Ci) and (C2) can be 
reduced respectively to the integral equations (22) and (25), 
respectively which possess the same character as the integral 
equations (11) and (18). So, (22) and (25) can be reduced 
to Fredholm integral equations to which the theorems 
of §2 apply. 
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