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THE FORMS ax?4-by*+cz? WHICH REPRESENT
ALL INTEGERS

BY L. E. DICKSON

THEOREM. f=ax?+by?+c3? represents all integers, positive,
negative, or zero, if and only if: 1. a, b, ¢ are not all of like sign
and no one is zero; 11. no two of a, b, ¢ have a common odd
prime factor; 111. either a, b, ¢ are all odd, or two are odd and
one is double an odd; IV. —bc, —ac, —ab are quadratic resi-
dues of a, b, c, respectively.

We shall first prove that I-IV are necessary conditions.
Let therefore f represent all integers. It is well known that
I follows readily.

If @ and b are divisible by the odd prime p, f represents
only 1+3(p—1) incongruent residues c¢z? modulo p. This
proves I,

Next, no one of a, b, ¢ is divisible by 8. Let a=0 (mod 8).
Every square is=0, 1, or 4 (mod 8). First, let b=2B. Since
f represents odd integers, ¢ is odd. Since 5y?=0 or 2B
(mod 8) and ¢22=0, ¢, or 4c, f has at most six residues modulo
8. If m is a missing residue, f represents no m— pn. Second
let b and ¢ be odd. Then 4b=4c=4 (mod 8). Thus the
residues of f modulo 8 are obtained by adding each of 0, 4,
b to each of 0, 4, ¢c; we get only seven residues 0, 4, b, ¢,
445, 4+c, b+c.

No one of a, b, ¢ is divisible by 4. Let a be divisible by 4.
Since a is not divisible by 8, a=4 (mod 8). Evidently
f=0, b, ¢, or b+c (mod 4). No two of these are congruent
modulo 4. If b=+41 (mod 4), they are 0, +1, ¢, ct1.
Evidently ¢ is not congruent to 0, *+1, or ¥1. Hence
¢=2 (mod 4). Since b5£0, this proves that one of b and ¢
is =2 (mod 4). By symmetry, we may take b=2 (mod 4).
If =6 (mod 8), we apply our discussion to —f instead of
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f. Hence take b=2(mod 8). Thus a=8n+4, b=8m-+2,
and ¢ is odd. Since x?=0 or 1 (mod 4), ax?=0 or 8n-+4
(mod 16). Since »?=0, 1 or 4 (mod 8), by2=0, 8m-+2, or 8
(mod 16). We employ only even residues of f modulo 16.
Then z is even, and c¢z?=0 or 4c (mod 16). But c=+1
(mod 4), 4c==*4 (mod 16). Evidently ax?>+b)* has at
most 2X3 residues modulo 16. The missing two even resi-
dues are seen to be s and s+4, where s=10 if » and m
are both even, s=2 if » is even and m odd, s=6 if n is odd
and m even, s=14 if » and m are both odd. According
as 4c=4 or —4, f is not congruent to s+4 or s modulo 16.

No two of a, b, ¢ are even. Let us set a=24, b=2B.
By the preceding result, 4 and B are odd. Also, ¢ is odd. If
A =4n—1, we use —f in place of f. Hence let 4 =4n+1.
Then f=2x*42By*+4cz? (mod 8). Consider only odd resi-
dues of f. Then cz?=c¢ (mod 8). The residues of 2x?+2By?
are 0, 2, 2B, 2B+2. When these are increased by ¢, the sums
must give the four odd residues modulo 8. Hence no two
are congruent. Thus no two of 0, 1, B, B+1 are congruent
modulo 4. Since B is odd and #1 (mod 4), B=3, B+1=0,
a contradiction.

This completes the proof of property III. Properties II
and III imply the following property.

V. a, b, ¢ are relatively prime in pairs.

Thus cd= —b (mod a) has a solution d which is prime to
a. Suppose that d were a quadratic non-residue of an odd
prime factor p of a. Write a=pA4. Consider values of x, y, 2
for which f is divisible by p. Then 22=dy? (mod p), whence
y and z are divisible by p. Hence f=pF, where F=Ax?
(mod p). Evidently Ax? takes at most 1+43(p—1) values
incongruent modulo p. Hence there is an integer IV that is
not congruent to one of them. Thus f fails to represent
p(IV+pw) for any value of w. This contradiction proves that
2=d (mod p) is solvable. The usual induction shows that
it is solvable modulo p*. Also, d?=d (mod 2). By means of
the Chinese remainder theorem, we see that w?*=d (mod a,
is solvable whether a is odd or double an odd integer,
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Then w is prime to a since d is. Since (cw)?= —bc (mod a)
this proves IV.

We shall now prove that I-IV imply that f represents
every integer g. It is known* that I, IV and V imply that
=0 has solutions x’, y’, 2’ which are relatively prime in
pairs. Then the greatest common divisor of the three num-
bers a=ax’, B=5by’, y=cz’ is 1. For, if they are all divisible
by a prime p, one of x’, y’, 2’ is divisible by p (otherwise
a, b, ¢ would all be divisble by p). By symmetry, let x’ be
divisble by p. Then neither y’ nor 2’ is divisible by p. Hence
b and ¢ would be divisble by p, contrary to V. Hencet if D
is any given integer, £, 7, { may be chosen so that

(1) af + Bn + v¢ = D.

We seek a solution of f=g of the form
(2) x = nx' + &, y =ny + 1, z=nz +¢.

Since ax'?+ - - -=0, f=g is satisfied if
3) 2Dn =g — e,
where

4 e = af® + bny* + cf*.

If ¢/, »’, ¢’ is a second set of solutions of (1), write
X=t-¢, Y=n—v, Z={f-¢.
Then
(5) aX + BY +vZ = 0.

We seek the general solution of (5). Let § be the greatest
common divisor ofa=84 and B=86B. Then 0 is prime
to v, whence Z=—06w. Hence

(6) AX + BY = yw, A, Brelatively prime.
There exist integers 7, s satisfying
@) Ar + Bs = 1.

* Dirichlet-Dedekind, Zaklentheorie, ed. 4, §157, p. 432 (Supplement X).
1 Since the g. c. d. 1 of @, B, 7, is a linear function of them. Multiply
the relation by D.
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Multiply the second member of (6) by (7). Thus
A(X — yrw) + B(Y — vysw) = 0.

The quantities in parenthesis are equal to Bm and —Am,
where m is an integer. The resulting values of X and Y,
together with Z= —dw, give the general solution of (6).
Hence if £/, 5/, {’ is one solution of (1), the general solution
1S

@8 ¢=¢+yw+ Bm, n=1"+ysw—Am, ¢ ={ — v,

where w and m are arbitrary, while 7, s satisfy (7).

First, let a, b, ¢ be all odd. Then x’+y’+32'=0 (mod 2).
But x’, y’, 2’ are not all even. Hence just one of them is
even. By symmetry, we may take x’ even, y’ and 2’ odd.
Then « is even, 8 and v are odd, 6 is odd, 4 is even, B is
odd. Write

9) ¢ = at” + by + "

When working modulo 2, we may discard the exponents 2
in (4) and (9). Take w=0, m=1. Then, by (8),

EE£’+1; 77577,7 ,(Eg‘,’ (mod2),
e=t+n+¢=¢é+1.

For w=m=0, evidently e=¢’. Hence we may take e=¢g
(mod 2). We may take D=1. Then (3) yields an integral
value of #n. Hence f=¢ is solvable.

Second, let ¢ and b be odd, but ¢ the double of an odd
integer, whence ¢=2 (mod 4). Since f=x+y (mod 2),
x'+9y’ is even. But x’ and y’ are relatively prime. Hence
x’ and ¥’ are odd. Thus « and B8 are odd, ¥ is even, § is odd,
A and B are odd. By (1) and (4),

(10) D=t+g=e, (mod 2).

If g is odd, we take D=1. (Seefootnote on p. 59.) By (10),
g—e is even and (3) yields an integer .
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But if g is even, we take* D=2. By (10), £+ and e are
even. In (8), take w=0, m=1. Then

(11) E=¢+B, n=9"—4, =¢.

In case £’ and 7’ are odd, we replace £/, 7', ¢’ by the preceding
solution having £ and 7 even. Hence we may choose the
initial solution &', %/, ¢’ so that £’ and 5’ are even. Then
(11) gives

e=¢e +aB2+ bA2=¢" +a+ b (mod 4).

Hence if a4+b=2 (mod 4), we may choose ¢ so that e=g
(mod 4). Then (3) yields an integral value of #. But if
e¢+b=0 (mod 4), we take w=1, m=0 in (8) and see that
£ and 7 are even since v is even. Then since § is odd and
c=2 (mod 4),

e=2t=20" —08)2t=2"+2=¢+2 (mod4).
As before, f=g is solvable.

COROLLARY. If ax?+by*+c3? is not a Null form, it does not
represent all integers.

Examples witha=1,c=—C, C>0.

(i) b=1. Then C must be odd or double an odd integer
and —1 must be a quadratic residue of C. Then every odd
prime factor of Cis =1 (mod 4). A necessary and sufficient
condition on C is that it be a sum of two relatively prime
squares.

(ii) b=2. Then C must be odd and —2 a quadratic resi-
due of C. Then its prime factors are =1 or 3 (mod 8).
A necessary and sufficient condition on C is that it be of the
form r2-+2s2, 7 odd, 7 and s relatively prime.

(iii) b=3. Then C must be odd or double an odd integer,
C prime to 3, while C and —3 must be quadratic residues of
each other. Hence every prime factor of C is =1 (mod 6).
Necessary and sufficient conditions on C are that C be odd
and of the form 724 3s2, where » and s are relatively prime.

Tre UnNiversiTy oF CHICAGO

* Elimination of & 7, ¢ between (1) and (2) gives ax+B8y+vyg=D.
Here D=x+y=f (mod 2). Hence D=g (mod 2).



