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CONCERNING R. L. MOORE'S AXIOMS Sx 
FOR PLANE ANALYSIS SITUS* 

BY R. L. WILDER 

1. Introduction, R. L. Moore has proposed f a system, Si, 
of eight axioms for plane analysis situs. Tha t a space 5 
satisfying this system is in one-to-one continuous corre­
spondence with two-dimensional euclidean space was shown 
by Moore in a later paper. % 

It is the purpose of the present paper to show that the set 
Si may be reduced to a set of seven Axioms, by the elimi­
nation of Axiom 6, which is a consequence of the other Axioms. 
Doubt as to the independence of Axiom 6 was raised in the 
mind of the author by noticing that the independence ex­
amples given for Axioms 6 and 7 on pp. 162 and 163 of F.A. 
are not valid, and by the subsequent finding of an independ­
ence example for Axiom 7 accompanied by failure to find 
any independence example for Axiom 6. 

2. Independence of Axiom 7. The independence of Axiom 7 
is established be the following example : 

Let the space considered by ordinary euclidean space of 
two dimensions. Choose a pair of rectangular axes OX and 
OY. For every positive integer n, let points be defined as 
follows: i4n = ( 0 , - l / » ) , J8n = ( l / » , - l / n ) , C n = ( l / « , 1/»), 
D n = (0, 1/»), E n = (0, 0), Fn = (l/(2n), 0). Let 7W be the 
bounded domain whose boundary is the rectangle AnBnCnDn 

together with the straight line interval EnFn. Then a point 
set R is a region if and only if R is either the interior of some 
simple closed curve or identical with some TV That the 

* Presented to the Society, December 28, 1927. 
f On the foundations of plane analysis situs, Transactions of this Society, 

vol. 17 (1916), pp. 131-164. Referred to hereafter as F. A. 
t Concerning a set of postulates for plane analysis situs. Transactions of 

this Society, vol. 20 (1919), pp. 169-178. 
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conditions of Axiom 7 are violated at En for every Tn is easily 
evident. 

3. Proof of Axiom 6 on the Basis of Axioms 1-5, 7, 8. 
In the proof of Theorems 1-27, inclusive, of F.A., no use 
is made of Axiom 6. The proof given of Theorem 28 is 
based on both Axioms 6 and 7, but can be made independent 
of Axiom 6 as follows : 

Proof of Theorem 28 without use of Axiom 6: Let the proof 
for the case where M denotes the exterior of / be given as in 
F.A. Denote the interior of / by R. 

Let JR be any region about 0, and let K be a region about 
0 which lies wholly interior to R and fails to contain some 
point, D, of / . Then by the preceding part of the argument 
there exists an arc AXB such that (1) A and B are on J , 
(2) AXB} except for its end points, is common to M and K, 
(3) of the two arcs into which A and B divide J", that one 
which contains 0 lies in K. 

Clearly that arc of J from A to B which contains D has 
only A and B in common with A OB. By Theorem 27 of 
F.A., either D is without AXBOA or 0 is without AXBDA. 
But since AXBOA is in K, the latter case would imply 
that D is a point of K (Theorem 21), so that the former case 
must hold. Then by the second part of Theorem 27, the 
interior of AXBDA —AOB (except for its end points) + t h e 
interior of AOBDA+the interior of AXBOA. 

Let T be a region about 0 and lying wholly interior to 
AXBDA and K. Then by the preceding part of the proof, 
there exist two points A1 and B' on AXBOA and an arc 
A 'X'B' such that A 'X'B' except for its end points is interior 
to T and exterior to AXBOA, and that arc of AXBOA from 
A' to B' which contains 0 lies in T. As the only points of 
AXBOA that lie in T are on A OB, it is clear that the arc 
A 'OB' is a subset of AOB and hence of J. That A'X'B', 
except for its end points, is a subset of R is evident at once 
since it lies interior to AXBDA but contains no point of 
AOB or the interior of AXBOA. 

Since T is a subset of K, which in turn is a subset of J?, 
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we see that A'X'B' is an arc such that (1) A' and B' are 
on J , (2) A'X'B' is common to R and JR, (3) of the two arcs 
into which A' and B' divide J that one which contains O 
lies in ÏÊ. 

In the proof of the remainder of the theorems of F.A., 
that is, Nos. 29-S2, inclusive, no use is now made of Axiom 6. 

I shall now prove the following theorem without use of 
Axiom 6 :* 

THEOREM A. If R is a region and J is the boundary of R, 
then J is a simple closed curve. 

Two proofs will be given. The first of these is based en­
tirely on F.A. and may be understood by a reader who has 
no further familiarity with the existing literature of analysis 
situs. The second proof has the advantage of being quite 
brief, and to one who is familiar with the various results 
that have been obtained in later papers dealing with plane 
analysis situs—especially with the theory of continuous 
curves—it is by far preferable. 

FIRST PROOF. This proof is based on Theorem 48 of F.A. 
Tha t / satisfies all conditions! of this theorem except (3) 
is readily apparent if we let S i = P , and S2^S — R'. I shall 
proceed to show that condition (3) is satisfied. 

Let x be any point of J, and let P be a point of R. Let 
Ju J2y Jz, - - • be a sequence of simple closed curves every 
one of which encloses x and such that (1) for every positive 
integer i, Ji+i lies interior to / ; , and (2) x is the only point 
common to the regions bounded by the simple closed 
curves of this sequence. (Theorems 5 and 36 of F.A.) 

As x is a limit point of P , there exists in R a sequence of 
distinct points, Pi , P2 , P3 , • • • , having x as a sequential 
limit point and such that for every positive integer i) Pi is 
interior to Jt-. By Theorem 16, P and P i are the extremities 

* See Theorem A, p. 163 of F. A. 
t That the first of these conditions is superfluous has been shown by 

P. ML Swingle. See this Bulletin, vol. 34 (1928), pp. 607-618. This theorem 
(No. 48 of F. A.) was first stated by Schoenfliess. 



I928J R. L. MOORE'S AXIOMS 755 

of an arc ax, and for every positive integer n, Pn and Pw+i are 
the extremities of an arc tn+i, such that the arcs ai, /2, h, t^ 
• • • all lie in R. Let #2 be the last point of d\ on h in the 

order from P i to P2 . Tha t portion of k from x2 to P 2 is an 
arc a2. Let #3 be the last point of a i + a 2 on h in the order 
from P 2 to P3 . Tha t portion of h from #3 to P 3 is an arc a3. 
Continuing in this way indefinitely, there is obtained a 
sequence of arcs ax, a2, a3, • • • , such that for every positive 
integer n, an has only one point, that is an end point xni in 
common with the set a i + a 2 + • • • +a n ~i . 

(1) If for every value of n there exists a positive integer ky 

such that a,k is the last arc of the sequence of arcs {a*} 
having points on Jn, then it is easily shown that the set 
5^i an together with the point x contains an arc from P 
to x which lies, except for #, wholly in R. 

(2) Suppose there exists a positive integer n such that 
infinitely many of the arcs of the sequence {a*} have points 
in common with Jn. Then infinitely many arcs a* of the 
sequence have points exterior to Jn+i as well as Pi interior to 
Jn+2. For every such arc, au let Ai be the first point of 
Jn+i on ai in the order from Pi to Xi (letting X\ denote P ) . 
Then let Bi be the first point of J"w+2 on that portion of a» 
from Ai to Pi , in the order from Ai to Pi. From Ai to Bi 
there exists an arc AiBi which is a subset of a», and such 
that if Jn+i is the set of all points between Jn+i and J"n+2 
(see footnote, p . 157 of F.A.), ~ÂîBu except for its end 
points, is a subset of Jn+1. Call the set of all such arcs {a**}. 
I t is easily shown that no two arcs of the set \a?\ have 
any points in common.f Since A+i is bounded and closed, 
the infinite set of points of type A i has at least one limit 
point A on Jn+i (Theorem 13). If z is any other point 
on Jn+i then at least one of the arcs into which A and z 
divide Jw+i must contain an infinite set of points of type 
Ai having A as a limit point; call this arc Az. Then 

t See pp. 344-345 of my paper Concerning continuous curves, Funda-
menta Mathematicae, vol. 7 (1925), pp. 341-377. 
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from the points of type Ai can be selected an infinité 
sequence Au A2, Ai, • • • , in the order from z to A on Az, 
and having A as a sequential limit point. The set of 
points Bu B%, Bzy • • • , where Bn is the other end point of 
the arc of {af} to which An belongs has a sequential limit 
point B. There is obtained thus a sequence AiB\, AiB^ 
AzBzt • • • , of arcs of the set {a*} arranged in a definite 
order. Call this sequence the set {AiBi}. 

The set {-4iJ3*} has a limiting set, Afi, whichf evidently 
contains A and B. Let w be a point of M\ in In+i (that such 
a point exists is easily shown; for instance, any simple closed 
curve which encloses Jn+z and lies within Jn+i will contain such 
a point), and let G be a simple closed curve enclosing w and 
lying wholly in In+i but not enclosing Jn+2> Let AkBk be 
an arc of the set {AiBi} which has points interior to G, 
and let y be one such point. Let 5 be an arc from y to w 
lying wholly interior to G, and let m be the first point of Mi 
on 5 in the order from y to w. Denote that portion of s from 
y to m by £. From the order of the arcs {AiBi} it follows 
that there exists a positive integer j such that every arc 
AiBi for which i > j has a point y* on t, and such that m 
is the sequential limit point of the sequence y3-, yj+i, y,-+2, 

(a) If m is a point of R, there exists a region R\ which con­
tains m and lies wholly in R. Then all but a finite number of 
the arcs of the set {^4,-5t-} are joined to one another by 
a sub-arc of / which lies wholly in R. 

(b) If m is not a point of R, then it must be a point of / . 
By Axiom 7 there exist in G two regions K and ]? such that 
~K contains m, K lies in S — R', and all those points of J 
that lie in K are points also of the boundary of K. 

For each i, AiBi and ^4Ï+I Bi+i, together with those arcs 
AiAi+\ and BiBi+i of Jn+i and Jn+2, respectively, that contain 
no end points of the set {AiBi}, form a simple closed curve 
Ki which cannot enclose m. For every positive integer 

t A point x is contained in Mi if it is a sequential limit point of a se­
quence of points Xi, X2, Xs, • • • , where for every n, xn is a point of AnBn. 
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rèzk, there is an arc br, subset of tt which has one end point 
on each of the arcs ArBr and Ar+\Br+2, and which lies, 
except for these end points, entirely within Kr. For each r 
there is at most a finite number of such arcs br. 

If only a finite number of arcs of type br contain points of 
S-~R, then all but a finite number of the arcs {-4J3;} are 
joined by arcs of R which lie wholly interior to C\. That this 
is indeed the case will follow if it can be shown that there 
cannot be infinitely many of the arcs of type br that contain 
points of S~R. This is done as follows: If an arc br contains 
a point of S — R, then, since its end points are in R, it must 
contain at least one point, Pr, of J". Let one such point 
be selected for each simple closed curve Kr (r^k). The point 
m is the sequential limit point of the set of points {Pr}, 
provided infinitely many such points exist. Then, since 
K contains m, K will contain at least two distinct points 
Pc and Pdf of type Pr, and by the conditions of Axiom 7 
these points are on the boundary of K. If Ic and Id denote, 
respectively, the interiors of Kc and Kd, then Ic and Id 
have no point, in common since no two points of type Pr 

lie interior to the same curve of type Kr. But then K must 
contain points in both Ic and Id, and being a connected 
set must also contain a point, Q, on Kc. That Q is not on 
Jn+i or Jn+2 is evident, since K is a subset of G. Hence Q 
is a point of some arc of the set [AiBi]. But this is im­
possible, since K lies in S — R', and the arcs {^4^»} all lie 
in R. Thus there cannot exist infinitely many points of 
type Pr, and the conclusion stated in the first sentence of 
this paragraph holds in any case. 

There must, then, exist a number Nu such that for u>N\ 
and v>Nx, AUBU and AVBV are joined by an arc of R which 
lies wholly interior to C\. A fortiori, those arcs of the set 
{ai} of which the arcs of the set {-4;2?i} of subscript >Ari 
are subsets, are joined by arcs of R in the same way. Call 
the set of such arcs S\. 

For each arc a% of S% that has points interior to Jn+3 let 
Ei be the last point of Jn+2 on a» in the order from Xi to P,-, 
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and let Fi be the first point of Jn+% on that portion of a,i from 
Ei to Piy in the order from Ei to Pi. Each such arc a» con­
tains an arc EiFt, such that EiFi, except for its end points, 
lies wholly in 7w+2 (where In+2 is the set of all points between 
Jn+2 and Jn+3). I t can be shown, by the methods employed 
above, that from the arcs of the latter collection can be 
selected an infinite sequence, E1F1, £2^2, EsFSl • • • , having 
the property that there exists a number N2 such that for 
M>N2 and v>N2, EUFU is joined to EVFV by an arc of R 
which lies wholly within /n + 2 . The set of all those arcs of 
Si which contain arcs of this sequence of subscript >iVr

2 

denote by S2. 
Continuing in this way it is shown that there exists an 

infinite sequence of sets Si, S2, S3, • • • , of arcs of {ai}, such 
that for any positive integer j (1) S,-+i is a subset of S,-, 
(2) if au and av are any two arcs of {ai} which belong to S,-, 
there is an arc ab of R such that (i) one end point of this arc, 
a, is a point of aU} and the other end point, &, is a point of av, 
(ii) the arc ab lies wholly interior to In+j (the set of all points 
between /n+J- and J n + 3 + i ) , and (iii) the arcs aPu and bPv, 
subsets of au and av> respectively, lie wholly interior to 7"»+,-. 

The first arc of the sequence {ai} which belongs to Si 
denote by ƒ1. The first arc of {a^ a f te r / i which belongs 
to S2 denote by ƒ2. Then there exists, in 7n+i, an arc of R 
whose end points are a point x' of / i and a point y' of ƒ2, 
and such that the arc y'Pei a subset of the arc /2=a e , lies 
wholly interior to Jn+i. The first arc of {ai} af ter /2 which 
belongs to S3 denote by /3. Then there exists, interior to 
Jn+2, an arc of R having as end points a point x" of y'Pe 

and a point y" of ƒ3, and such that the arc y"Ph, subset of 
fz^aht lies wholly interior to 7n+2. Continue this process 
indefinitely. Then, if fi=aq, the set # i + a 2 + • • * +aq+x'y' 
+y'Pe+x"y"+y"Ph+ • • • +x can be shown to contain 
an arc from P to x which lies, except for x, wholly in R. 

To show that if P is exterior to R, then there exists an arc 
from P to x which lies, except for xt wholly in S —J?', we can 
proceed as above, with only slight modification of the proof. 
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I t follows that condition (3) of Theorem 48 of F.A. is 
satisfied, and therefore ƒ is a simple closed curve. 

SECOND PROOF.* By virtue of the results obtained in R. L. 
Moore's paper Concerning a set of postulates f or plane analysis 
situs,] space 5 is equivalent to a euclidean plane. We may, 
then, make free use of theorems established for the euclidean 
plane. By the Phragmen-Brouwer theorem, since / is the 
common boundary of the domains R (bounded) and S — R' 
it is a bounded continuum. Suppose it is not a continuous 
curve. Then there exist two concentric circles k\ and &2 

and a countable infinity of mutually exclusive continua 
M, Mu Mi, • • • , satisfying all the conditions of the theorem 
of section 3 of R. L. Moore's Report on continuous curves 
from the viewpoint of analysis situs.% Let P denote a point 
of M lying in the point set H composed of the set of all 
points between ki and k2 and let R denote a region con­
taining P and lying, together with its boundary, in H. 
By Axiom 7 there exist, in R, two regions K and 1? such that 
X contains P, K lies in S — R' and all points of the boundary 
of R tha t lie in K belong to the boundary of K. There exist 
four continua of the sequence Mi, Mz, • • • , that contain 
points of ~K. They may be so labelled x, y, z, w that if a con­
nected subset of 27 contains a point of x and a point of z 
then it contains a point of y+w. The boundary of K con­
tains a point A of x and a point B of z. The point set 
K+A+B is a connected subset of Tl. Hence K contains a 
point of y+w. But y+w and K are subsets of J and of S — J 
respectively. Thus the supposition that J is not a continuous 
curve leads to a contradiction. Furthermore, by Theorem 
20 of F.A., J is the outer boundary of R. Hence / is§ a 
simple closed curve. 

* This proof was suggested to the author by R. L. Moore, to whom the 
original manuscript of this paper was sent for criticism prior to its being 
offered for publication. 

t Loc. cit. 
t This Bulletin, vol. 29 (1923), pp. 296-297. 
§ R. L. Moore, Concerning continuous curves in the plane, Mathema­

tische Zeitschrift, vol. 15 (1922), p. 258, Theorem 4. 
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THEOREM B. (Axiom 6 of F.A.) If R and "R are regions 
and P is a point in TL and on the boundary of R, then there 
exist in Ï? two regions K and ÎT such that "K contains P , K 
lies in R and all those points of the boundary of R that lie in 
J£ are points also of the boundary of K. 

PROOF. By Theorem A the boundary of R is a simple 
closed curve J . By Theorem 28 of F.A. there exists a simple 
continuous arc AXB such that (1) A and B are on ƒ, 
(2) AXB, except for its end points, is common tö R and ÎÊ, 
(3) of the two arcs into which A and B divide / , that one, 
APBy which contains P lies in R. Let the interior of the 
simple closed curve formed by AXB and A PB be denoted 
by K, and let 7[ be any region which contains P , lies wholly 
in ]R, and contains no point of AXB nor of that arc of J 
which does not contain P . The regions K and IT denned in 
this manner satisfy the conditions of the theorem. 

In conclusion, it is perhaps interesting to note that in 
the above proof of Theorem A we have also proved the 
following theorem. 

THEOREM C. If D is a bounded domain (as defined in F.A., 
p. 136) such that (1) S — D' is connected, and (2) if P is a 
boundary point of D and R is a region containing P then 
there exist in R two regions K and 7[ such that ÏT contains P , 
K lies in S — D' and all those points of the boundary of D that 
lie in # are points also of the boundary of K, then the boundary 
of D is a simple closed curve. 

Furthermore, by virtue of a theorem due to J. R. Kline* 
we can state the following theorem. 

THEOREM D. If D is an unbounded domain satisfying con­
ditions (1) and (2) of Theorem C, then the boundary of D is an 
open curve. 

THE UNIVERSITY OF MICHIGAN 

* The converse of the theorem concerning the division of a plane by an open 
curve, Transactions of this Society, vol. 18 (1917), pp. 177-184. See in 
this connection the article of P. M. Swingle referred to in a preceding 
footnote. 


