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P L A N E NETS WHOSE FIRST AND MINUS FIRST 
LAPLACIAN TRANSFORMS EACH D E G E N E R A T E 

INTO A STRAIGHT LINE* 

BY J. O. HASSLER 

1. Introduction. In the projective theory of plane nets, as 
developed by Wilczynski,f the members y\(u, v), y<i{u, v), 
yz(u, v) of any fundamental system of solutions of a com­
pletely integrable system of partial differential equations of 
the form 

{
yuu = ayu + by„ + cy, 

yUv = o'yu + b'yv + c'y, 

y™ = a"yu + b"yv + c"y 

are interpreted as the homogeneous coordinates of a point 
Py in a plane, defining a non-degenerate net of plane curves 
consisting of two one-parameter families. The invariants and 
covariants of the system (1) under the transformations 

(2) y = \(u,v)y, 

and 

(3) û = U{u), and v = V(v) 

may be interpreted geometrically by certain projective prop­
erties of the net. The two covariants 

(4) p = yu — b'y, <r = yv — a'y 

may be taken as the homogeneous coordinates of two 
points Pp and Pa when we substitute successively for y 
the values yu y2} and yz. As u and v vary Pff and Pp describe 
nets called the first and minus first Laplacian transforms of 
the original net. 

* Presented to t'ie Society, April 6, 1928. 
t E. J. Wilczynski, One-parameter families and nets of plane curves, 

Transactions of this Society, vol. 12 (1911), pp. 473-510. 
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In this paper we consider nets such that the curves 
w —const, of the first Laplacian transform all degenerate 
into one straight line while the curves v = const, go into points 
on the line, and the curves v = const, of the minus first La­
placian transformd egenerate into one straight line while the 
curves u = const, go into points on the line. The invariants 
and covariants of the net are computed and the net deter­
mined by certain boundary conditions. 

2. The Canonical Form of the Equations and the Invariants. 
If we apply the transformation (2) to the system of equations 
(1), we obtain 

{
Juu = - B'yu + Byv + Cy, 

yuv °*A'yu + B'y9+C'y, 

yvv = A"yu- A'yv+C"y, 

where the coefficients B', B, C, etc., are functions of a, b> 
c> a', b\ c\ a", bn', c", X and their derivatives.* The system 
is then said to be in its canonical form. The coefficients B 
and A " are relative invariants of the system under the trans­
formations (2) and (3). The five remaining fundamental 
invariants are 

A " B 
Af + ——, W = B'+—-, C ' - C ' + A'B'9 

6A" 6B 
C - Bu' - 2B'2 + A'B, 

C" - Av' - 2A'* + A"B'. 

Two other invariants, t 

(6) H « C' + A'B' - Au\ K = C' + A'B' - Bv', 

have a special significance in connection with the Laplacian 
transforms. 

Wilczynski has shownj that if H-Q, the curves v~ const, 
of the first Laplacian transform degenerate into points and 

* Wilczynski, loc. cit., equations (13). 
t Wilczynski, loc. cit., equations (21) and (29). 
t Wilczynski, loc. cit., pp. 489-490. 

(5) 

21' 

e -
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the curves u = const, all coincide with the locus of these 
points, making the degenerate transformed net consist of 
a single curve. Similarly, if i£ = 0, the minus first Laplacian 
transform becomes a single curve v = const. Furthermore, if* 

(7) A"*K + A"V9' - WAi' - 0, 

the curves u = const, of the first Laplacian transform be­
come straight lines, and if 

(8) B*H + B&u - &BU - 0, 

the curves v = const, of the minus first Laplacian transform 
become straight lines. We shall consider the case where 
equations (7) and (8) are satisfied simultaneously with 

(9) H » K - 0. 

From (7) and (8), by means of (9), we obtain, after inte­
grating, 

g" e 
l oS "7/7 ^ * M > l oS ~̂ T * ^ W > 

where </> and ^ are arbitrary functions of w and v, respectively. 
The quotients %n/A" and 2/B are relative invariants. If 
we apply the transformation (3), they are transformed into 

S" _ 1 <S" S _ 1 S 

1" " ÊF' Ü7'' ¥ ~ V' ~B' 

If we choose U and F so that £/' = er*(M) and F'-*-*<•>, 
we have 

(10) < E " - i l " , ® = £ . 

The system (1) is subject to certain integrability con­
ditions! which, if used with (5), (6), (9), and (10), enable us 
to express all of the coefficients of the canonical form in 
terms of B and A " . In fact, we find that 

* Wilczynski, loc. cit., equation (54a). 
t Wilczynski, loc. cit., equations (5) and (14). 



594 J. O. HASSLER (Sept.-Oct,, 

B = B, C = —(1 + B + B*)- — (BU + BV), 

1 All I T> -I 

(11) \A'= , B' , C'=>—(.2A"B+A"+B- 1), 
1 3 3 9 

A" = A", C" = — (1 +A" + A"*) {AJ'+AV"), 

with the further conditions that the invariants A" and B 
must satisfy the partial differential equations 

(12) AV = Bv « -A"B. 

The general solution of (12) is* 

(13) i l " = — , B = — ; 
(j>(u) + yp(v) <t>(u) + \p(v) 

where <j> and \[/ are arbitrary functions of u and v, respectively. 
I t is easy to verify that the integrability conditions are 
identically satisfied if a system of partial differential equa­
tions of the form (1') has coefficients defined by (11) and (13). 
Hence we may state the following conclusion. 

If the coefficients of a system of partial differential equations 
of the form (1') satisfy conditions (11) and (13), any funda­
mental system of solutions yi, y2, yz of (1') defines a net whose 
first and minus first Laplacian transforms each degenerate 
into a straight line. Conversely, any net whose first and minus 
-first Laplacian transforms each degenerate into a straight 
line gives rise to a system of partial differential equations of 
the form (1') whose coefficients satisfy conditions (11) and (13). 

3. Determination of the Net by Boundary Conditions. In 
the projective differential geometry of plane curvesf three 
linearly independent solutions yx(x), y2(x)y ys(x), of a linear 
homogeneous differential equation of the third order, 

* Acknowledgement is hereby given to G. E. Raynor, of the University 
of Oklahoma, for the solution of these equations. 

t E. J. Wilczynski, Projective Differential Geometry of Curves and Ruled 
Surfaces, Leipzig, B. G. Teubner, 1916, pp. 58-61. 
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dzy d2y dy 
(14) ^ + 3p1-<- + 3p2y- + piy = 0, 

dx3 dx2 dx 
are interpreted as the homogeneous coordinates of a point on 
a plane. 

Two functions of the coefficients of (14), called 03 and 6% 
by Wilczynski, which remain invariant under the transforma­
tions 

y = \(x)ri, x =ƒ(£) , 

are sufficient to determine the projective properties of the 
curve. If, then, two arbitrary functions coz(x) and cog(x) be 
given there exists a curve whose invariants 03 and 0 s are 
respectively equal to these given functions and this curve 
will be uniquely determined except for projective trans­
formations. In particular, if 03 = 0, the corresponding curve is 
a conic. 

If we differentiate both members of the first equation of 
(1') with respect to u and then eliminate yv and yuv, we obtain 
an equation of the form (14). We may then compute the 
invariants 03 and 08 for a curve v = const, of the net under 
consideration. In fact, if we employ the equations derived 
by Wilczynski, making use of equations (11) and (13), we 
find 

4>* <j>'" 4>" 4 > V " 
5403 = _ 9 + 9 + 6 + 45 

* ' <*>' * ' ( 4 > ' ) 2 

(15) - 1 5 - ! - - 4 o _ 7 + 4 , 
<£'2 <£'3 

e8 « 60303" - 703'2 - 27P 2 0 3
2 , 

where the accents indicate derivatives with respect to u and 
where 

à>"' é"2 ó" 1 

We notice tha t the invariants are independent of v, since 
0 is a function of u alone. All the curves z>—const, are pro­
tectively equivalent. 



596 J. O. HASSLER [Sept.-Oct., 

Let C be any analytic curve, not a straight line, and let 
equation (14) be its differential equation with respect to 
any independent variable x to which it may be referred 
parametrically. Let dz=œz(x) and ds=o)s(x) be the values 
of its invariants as functions of x. If the curve v = Vo of the 
net coincides with C it must be possible to determine u as a 
function of x so that the equations 

( $z(u) = œ3(x), 

\ 6s(u) - œs(x) 

are identically satisfied. On the other hand, if equations (16) 
are identically satisfied the curve C will be projectively 
equivalent to the curve V = VQ of the net. 

To reduce the order of the differential equations we make 
the substitution 

(17) w = ~ 
<t> 

in equations (IS). If we substitute the values of 03 and 0g 
from (15) in (16) we find that the differential equations to be 
satisfied by w and u as functions of x have the form 

d2w dw 
- 9 — + 9 ( 1 + 2w) 4w3 - 6w2 

du2 du 
(18) + 6w + 4 = 54co3(#), 

d2o)z /do)z\2 / dw \ 
6o>3 7 I I — 31 W2—W—l IWg2 = (Jûg(x) . 

[ du2 \du / \du / 

If C be not a conic, so that o>z(x) 5^0, we can by a suitably 
chosen transformation of the independent variable x make 
o>3*=L* We may then, after using x as the independent 
variable in all the differentiation, write the equations in 
the form 

* Wilczynski, Projective Differential Geometry, p. 61. 
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(19) 

d 
- 9 — 

dx 

rdw~\ 

dx 

du 

\_dxJ dx 

dw 

1 dx 
h 9(1 + 2w) 4w3 

du du 
dx 

- 6w2 + 6w - 50 « 0, 

- 3 h 3w2 + 3w + 3 = o)B(x). 
dw 

If we use the second equation to simplify the first, we ob­
tain the form 

- 9(1 + 2 « 0 — + (14w3 + 21w2 + 33w - 41 
dx 

i du 
(20) { - 6WÜ>8(*) - 3co8(x)) f- 3w8' = 0, 

dx 
dw du 

3 (3w2 + 3w + 3 - co8(*))— = 0. 
dx dx 

We have in (20) two differential equations of the first 
order with two dependent variables w and u and one inde­
pendent variable x. There exist then two integrals involving 
the variables and two arbitrary constants. 

From (17), <f> can be determined by two quadratures, which 
brings the total number of arbitrary constants up to four. 
The variable u enters only through its derivative du/dx. 
Hence u+k, where k is an arbitrary constant, will satisfy 
the same system as u. By fixing arbitrarily the origin of the 
w-scale k may be made equal to zero. Thus we determine <f> 
as a function of u except for three arbitrary constants. 

If C be a conic, w3(#) =0 , and equations (18) reduce to the 
single equation 

d2w dw 
(21) - 9 + 9(1 + 2w) 4wz - 6w2 + 6w + 4 « 0, 

du2 du 
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for which there exists an integral involving w as a, function 
of u and two arbitrary constants. As in the preceding case 
<t> may be determined as a function of u except for three 
arbitrary constants. 

If we differentiate the third equation of (1') with respect 
to v and eliminate yu and yuvt we obtain an equation in the 
form (14) where v is the independent variable. By means 
of this we study the projective properties of the curves 
u = const, and by choosing an arbitrary curve C' we can de­
termine the function x[/(v) except for three arbitrary con­
stants. 

Equations (13) show that the invariants A" and B are 
determined except for six arbitrary constants. We shall now 
proceed to determine these six constants by choosing the 
straight lines of the Laplacian transforms. 

Let f(yu y2f y*) = 0 be the equation of the curve C(v = v0), 
where it is to be understood that yu y%, and yz form a funda­
mental system of solutions of equations (1). Let F(pu p2,Pz) 
= 0 be the equation of the corresponding curve CU, 
generated by the point Pp , of the minus first Laplacian trans­
form, where each p is defined as a function of y by the first 
of equations (4) which, on account of (11), become 

1 - B \-A" 
(4') p = yu 7~y> c = Jv 3 y' 

F(pu P2, Pz) becomes a function of yu 3>2, yz, and B. According 
to the conditions set forth in this paper C_i is a straight 
line, the degenerate minus first Laplacian transform. If we 
choose this line arbitrarily we will have two relations be­
tween the arbitrary constants in B. 

Furthermore, equations (4') show that the point Pp lies on 
the tangent to the curve C at Py and the point Pc on the 
tangent to C'. If we choose a fixed point U==UQ on C the 
point Pp can occupy only a single infinity of positions. Since 
the line CLi has been prescribed, the position of Pp will be 
determined, thus giving us a third relation between the arbi­
trary constants. 
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In a similar manner we may secure three relations between 
the constants by choosing a straight line G to be the degen­
erate first Laplacian transform and a point v = v0 on the 
curve C'. The six relations are sufficient to determine the 
six arbitrary constants. We may therefore state the following 
conclusion. 

Choose two non-rectilinear but otherwise arbitrary analytic 
curves C and C' intersecting in a point P and having distinct 
tangents T and Tf at P. Choose an arbitrary straight line C-i 
intersecting T and another line C\ intersecting Tf. There 
exists one and only one net which contains the curves C and Cf 

and which moreover has G and C-ifor its degenerate first and 
minus first Laplacian transforms. 

The family of curves v = const, may be obtained from the 
curve C by projective transformations. Similarly, the family 
u = const, may be obtained from C'. 

T H E UNIVERSITY OF OKLAHOMA 

SOME P R O P E R T I E S OF U P P E R SEMI-CONTINUOUS 
COLLECTIONS OF BOUNDED CONTINUA* 

BY W. A. WILSON 

1. Introduction. If T= {/} denotes a closed set of points 
and with each point t there is associated a unique bounded 
continuum X (or Xt) in such a way that (a) Xr-XV = 0 if 
ty^t', (b) at each point t = r of T the upper closed limit of 
Xt as t ->r is a part of X r , we say that X =f(t) is an upper semi-
continuous function in T. The collection of continua {X} 
is also known as an upper semi-continuous collection of 
continua. These aggregates have been discussed by various 
writers here and abroad and enjoy numerous interesting 
properties. 

R. L. Moore, in particular, has given an extensive treat-

* Presented to the Society, February 25, 1928. 


