NEW DIVISION ALGEBRAS

BY L. E. DICKSON

1. Introduction. No technical acquaintance with linear algebras is presupposed in this note. We consider only linear algebras for which multiplication is associative. As with quaternions, an algebra A is called a *division* algebra if every element $\neq 0$ of A has an inverse in A. A division algebra A over a field F is called *normal* if the numbers of F are the only elements of A which are commutative with every element of A.

In a paper recently offered to the Transactions of this Society, A. A. Albert determined all normal division algebras of order 16 and found a new type. The object of this note is to derive from mild assumptions the corresponding type of normal division algebras A of order $4p^2$, where p is a prime. We shall first draw simple conclusions from an initial assumption.*

Assumption 1. Let A contain an element i_1 satisfying an equation $f(\omega^2) = 0$ of degree 2p with only even powers of ω , whose coefficients are in F, that of ω^{2p} being unity, and which is irreducible in F, such that the polynomials in i_1 are the only elements of A which are commutative with every element of A.

2. LEMMA 1. Let an element i_2 of A be commutative with $I = i_1^2$, but not with i_1 itself. The algebra S generated by i_1 and i_2 is of order 4p. It may be regarded as an algebra of order 4 with the basis 1, i_1 , i_2 , i_1i_2 over F(I); this algebra is normal. In other words, the polynomials in I are the only elements of S which are commutative with every element of S.

Let K denote the field composed of all those elements of

^{*} Except for the requirement concerning even powers of ω , Assumption 1 is proved in the writer's Algebren und ihre Zahlentheorie, Zürich, 1927, pp. 262-3.

S which are commutative with every element of S. If K is of order k and S is of order s over F, then S is a normal division algebra of order n^2 over K, where $s = n^2 k$. Since K contains the root I of an equation of degree p irreducible in F, the subfield F(I) is of order p, whence k is a multiple of p.

Since i_2 is not commutative with i_1 , i_2 is not a polynomial in i_1 and hence is not a rational function of i_1 . Thus

(1)
$$i_1^j, i_1^j i_2, \qquad (j = 0, 1, \cdots, 2p - 1),$$

are linearly independent with respect to F. Hence $s \ge 4p$. Since S and A are normal over different fields K and F, $S \ne A$. Thus s is a divisor $<4p^2$ of $4p^2$. First, let p>2. If s is not divisible by p^2 , then s=4p. But if s is divisible by p^2 , either $s=2p^2$, or $s=p^2$ and p>4. If p=2, evidently s=8=4p.

If either $s = p^2$, p > 4, or $s = 2p^2$, p > 2, then $s = n^2k$ and the divisibility of k by p show that n = 1, S = K, contrary to the fact that i_2 is not commutative with i_1 .

Hence $s=4p=n^{2}k$, whence n=2, k=p. Thus K=F(I)and S is a normal algebra of order 4 over F(I). The 4pelements (1) form a basis of S over F.

3. LEMMA 2. Any element of A which is commutative with $I = i_1^2$ belongs to S.

Any element not in S extends S to a division subalgebra whose order exceeds 4p, is a multiple of 4p, and is a divisor of $4p^2$. Hence it extends S to A itself (of order $4p^2$).

Suppose that e is commutative with I and is not in S. Since I is commutative with every element of S and with e, which extends S to A, I is commutative with every element of A. Since I is not in F, this contradicts the hypothesis that A is normal over F.

4. Assumption 2. Let A contain elements i_1 and z such that i_1 satisfies Assumption 1 and such that

(2)
$$i_2 = z i_1 z^{-1}, i_3 = z i_2 z^{-1}, \cdots, i_p = z i_{p-1} z^{-1}$$

are all commutative with $I = i_1^2$, while i_2 is not commutative with i_1 , and $i_2^2 \neq I$.

Since $zIz^{-1} = i_2^2 \neq I$, z is not commutative with I and hence is not in S. By §3, z extends S to A. Since (1) gives a basis of S, every element of S is of the form

(3)
$$G = p(i_1) + q(i_1)i_2.$$

Then

(4)
$$G' = zGz^{-1} = p(i_2) + q(i_2)i_3.$$

For $p \ge 3$, i_3 is commutative with i_1^2 and hence is in S. Thus

(5)
$$zG = G'z, G' \text{ in } S.$$

5. LEMMA 3. i_1^2, \dots, i_p^2 are all distinct.

Suppose that $i_{r+1}^2 = i_1^2$, where r is one of 2, 3, \cdots , p-1. Then

$$z^r i_1^2 z^{-r} = i_{r+1}^2 = i_1^2,$$

whence z^r is commutative with i_1^2 and is in S. Using also (5), we see that every element of the algebra A obtained by extending S by z is of the form

$$H_0 + H_1 z + \cdots + H_{r-1} z^{r-1}$$
,

where each H is in S. Since S is of order 4p, the order of A is $\leq 4p \cdot r < 4p^2$. But A is of order $4p^2$.

Suppose that $i_{r+s}^2 = i_s^2$ (r>0, s>1). These are the transforms of i_{r+s-1}^2 and i_{s-1}^2 by z. Hence the latter are equal. After s-1 such steps, we get $i_{r+1}^2 = i_1^2$, just proved impossible.

6. LEMMA 4. We have the following identity:

(6)
$$f(\epsilon) \equiv (\epsilon - i_p^2) \cdots (\epsilon - i_2^2)(\epsilon - i_1^2).$$

Note that

(7) i_r is commutative with $i_{r+1}, \cdots, i_p, (r=1, \cdots, p-1)$.

This is true by Assumption 2 if r=1. To proceed by induction, let (7) hold when r=j, whence i_i^2 is commutative

557

with i_k for $k \ge j+1$. Transformation by z shows that i_{i+1}^2 is commutative with i_{k+1} , whence (7) holds when r=j+1.

Write v_i for i_j^2 . As a special case of (7), v_1, \dots, v_p are commutative. The indeterminate ϵ is commutative with every quantity of A. Thus z transforms $f(\epsilon)$ into itself. But $f(v_1) = 0$. Hence by (2), $f(v_2) = 0, \dots, f(v_p) = 0$. Let

$$f(\epsilon) = \sum_{j=0}^{p} a_{j} \epsilon^{p-j}, \ q(\epsilon) = \sum_{j=0}^{p-1} c_{j} \epsilon^{p-1-j}, \ a_{0} = c_{0} = 1,$$

$$c_{j} = a_{j} + c_{j-1} v_{1}, \qquad (j = 1, \cdots, p).$$

Then, since v_1 is commutative with ϵ ,

(8) $f(\epsilon) \equiv q(\epsilon)(\epsilon - v_1) + c_p.$

By induction on r,

$$c_r = \sum_{j=0}^r a_j v_1^{r-j}, \qquad c_p = f(v_1) = 0.$$

Since v_i is commutative with v_1 , we obtain a true equality from (8) by replacing ϵ by v_i . Thus $0 = q(v_i)(v_i - v_1)$. The second factor is not zero if $i \ge 2$. In our division algebra we therefore have $q(v_i) = 0$ when $i \ge 2$.

We may repeat this argument with f and v_1 replaced by qand v_2 . Hence $q(\epsilon) \equiv r(\epsilon)(\epsilon - v_2)$, in which the coefficients of $r(\epsilon)$ are polynomials in v_1 and v_2 . Since they are commutative with v_j , $0 = r(v_j)(v_j - v_2)$. Hence $r(v_j) = 0$ when $j \ge 3$.

Proceeding similarly, we ultimately obtain

$$f(\epsilon) \equiv (\epsilon - v_p) \cdots (\epsilon - v_2)(\epsilon - v_1).$$

7. THEOREM 1. $f(\epsilon) = 0$ is a cyclic equation.

By (6), $i_1^2 + \cdots + i_p^2$ is a number of F and hence is transformed into itself by z. But z transforms i_1^2 into i_2^2 , \cdots , i_{p-1}^2 into i_p^2 . Hence z must transform i_p^2 into i_1^2 . Since z^{p-2} transforms i_2^2 into i_p^2 , z^{p-1} transforms i_2^2 into i_1^2 and evidently transforms i_1 into i_p . Hence z^{p-1} transforms $i_2^{\,2}i_1$ and $i_1i_2^{\,2}$ into $i_1^{\,2}i_p$ and $i_pi_1^{\,2}$. The latter are equal by by Assumption 2. Hence the former are equal. Since $i_2^{\,2}$ is therefore commutative with both generators i_1 and i_2 of S, it is commutative with every element of S. By Lemma 1, $i_2^{\,2} = \theta(i_1^{\,2})$, where θ is a polynomial with coefficients in F. Transformation by z gives

$$i_{3^2} = \theta(i_{2^2}) = \theta[\theta(i_{1^2})] = \theta^2(i_{1^2}),$$

if $\theta^{r}(k)$ denotes the *r*th iterative of $\theta(k)$ and not its *r*th power. By induction,

(9)
$$i_{r+1}^2 = \theta^r(i_1^2).$$

Take r = p - 1 and transform by *z*. Hence

(10)
$$i_1^2 = \theta^{p-1}(i_2^2) = \theta^p(i_1^2).$$

Since $f(\epsilon) = 0$ has these properties, it is cyclic.

8. THEOREM 2. Every element of A can be expressed in one and only one way in the form

(11)
$$A_0 + A_1 z + \cdots + A_{p-1} z^{p-1}$$
,

where each A_i is in S. The product any two sums (11) can be expressed as a third such sum by means of

(12)
$$zG = G'z, \quad z^p = s,$$

where G, G', s are all in S and are defined in (4), (5).

Since z^{p-1} transforms i_1^2 into i_p^2 , and z transforms the latter into the former, z^p is commutative with i_1^2 and hence is in S. By means of (12), every element of A (to which z extends S) can be expressed in the form (11). Since S and A are of orders 4p and $4p^2$, two polynomials (11) are distinct unless identical.

9. THEOREM 3. S is an algebra of generalized quaternions over F(I) with the basis 1, i_1 , y, i_1y , where $y = i_1i_2 - i_2i_1$.

Since i_2 is not commutative with i_1 , $y \neq 0$. Since i_2 is commutative with i_1^2 ,

560 L. E. DICKSON [Sept.-Oct.

$$(13) yi_1 = -i_1y$$

Thus y is not commutative with i_1 and hence is not a polynomial in i_1 . We may therefore replace the basis (1) of S over F by $i_1^{i_1}$, $i_1^{i_1}$ y. Thus S has the basis in Theorem 3.

By §7, i_{2}^{2} is commutative with i_{1} . Hence

$$r = i_1 i_2 + i_2 i_1$$

is commutative with i_2 . Since i_2 is commutative with $I=i_1^2$, $ri_1=i_1r$. Hence r is commutative with every element of S. Thus r is a polynomial P(I) in I. We have

$$2i_1i_2 = P(I) + y, \ 2i_2i_1 = P(I) - y.$$

But y is commutative with I. Hence

$$4i_1i_2^2i_1 = P^2 - y^2.$$

Since i_{2}^{2} is commutative with i_{1} ,

$$y^2 = [P(I)]^2 - 4I \ \theta(I).$$

This fact that y^2 is a polynomial in I and relation (13) together show that S is an algebra of generalized quaternions over F(I).

The University of Chicago