NEW DIVISION ALGEBRAS

BY L. E. DICKSON

1. Introduction. No technical acquaintance with linear algebras is presupposed in this note. We consider only linear algebras for which multiplication is associative. As with quaternions, an algebra A is called a division algebra if every element $\neq 0$ of A has an inverse in A. A division algebra A over a field F is called normal if the numbers of F are the only elements of A which are commutative with every element of A.

In a paper recently offered to the Transactions of this Society, A. A. Albert determined all normal division algebras of order 16 and found a new type. The object of this note is to derive from mild assumptions the corresponding type of normal division algebras A of order $4 p^{2}$, where p is a prime. We shall first draw simple conclusions from an initial assumption.*

Assumption 1. Let A contain an element i_{1} satisfying an equation $f\left(\omega^{2}\right)=0$ of degree $2 p$ with only even powers of ω, whose coefficients are in F, that of $\omega^{2 p}$ being unity, and which is irreducible in F, such that the polynomials in i_{1} are the only elements of A which are commutative with every element of A.
2. Lemma 1. Let an element i_{2} of A be commutative with $I=i_{1}{ }^{2}$, but not with i_{1} itself. The algebra S generated by i_{1} and i_{2} is of order $4 p$. It may be regarded as an algebra of order 4 with the basis $1, i_{1}, i_{2}, i_{1} i_{2}$ over $F(I)$; this algebra is normal. In other words, the polynomials in I are the only elements of S which are commutative with every element of S.

Let K denote the field composed of all those elements of

[^0]S which are commutative with every element of S. If K is of order k and S is of order s over F, then S is a normal division algebra of order n^{2} over K, where $s=n^{2} k$. Since K contains the root I of an equation of degree p irreducible in F, the subfield $F(I)$ is of order p, whence k is a multiple of p.

Since i_{2} is not commutative with i_{1}, i_{2} is not a polynomial in i_{1} and hence is not a rational function of i_{1}. Thus

$$
\begin{equation*}
i_{1}{ }^{j}, i_{1}{ }^{j} i_{2}, \quad(j=0,1, \cdots, 2 p-1) \tag{1}
\end{equation*}
$$

are linearly independent with respect to F. Hence $s \geqq 4 p$. Since S and A are normal over different fields K and F, $S \neq A$. Thus s is a divisor $<4 p^{2}$ of $4 p^{2}$. First, let $p>2$. If s is not divisible by p^{2}, then $s=4 p$. But if s is divisible by p^{2}, either $s=2 p^{2}$, or $s=p^{2}$ and $p>4$. If $p=2$, evidently $s=8=4 p$.

If either $s=p^{2}, p>4$, or $s=2 p^{2}, p>2$, then $s=n^{2} k$ and the divisibility of k by p show that $n=1, S=K$, contrary to the fact that i_{2} is not commutative with i_{1}.

Hence $s=4 p=n^{2} k$, whence $n=2, k=p$. Thus $K=F(I)$ and S is a normal algebra of order 4 over $F(I)$. The $4 p$ elements (1) form a basis of S over F.
3. Lemma 2. Any element of A which is commutative with $I=i_{1}{ }^{2}$ belongs to S.

Any element not in S extends S to a division subalgebra whose order exceeds $4 p$, is a multiple of $4 p$, and is a divisor of $4 p^{2}$. Hence it extends S to A itself (of order $4 p^{2}$).

Suppose that e is commutative with I and is not in S. Since I is commutative with every element of S and with e, which extends S to A, I is commutative with every element of A. Since I is not in F, this contradicts the hypothesis that A is normal over F.
4. Assumption 2. Let A contain elements i_{1} and z such that i_{1} satisfies Assumption 1 and such that

$$
\begin{equation*}
i_{2}=z i_{1} z^{-1}, i_{3}=z i_{2} z^{-1}, \cdots, i_{p}=z i_{p-1} z^{-1} \tag{2}
\end{equation*}
$$

are all commutative with $I=i_{1}{ }^{2}$, while i_{2} is not commutative with i_{1}, and $i_{2}{ }^{2} \neq I$.

Since $z I z^{-1}=i_{2}{ }^{2} \neq I, z$ is not commutative with I and hence is not in S. By $\S 3, z$ extends S to A. Since (1) gives a basis of S, every element of S is of the form

$$
\begin{equation*}
G=p\left(i_{1}\right)+q\left(i_{1}\right) i_{2} \tag{3}
\end{equation*}
$$

Then

$$
\begin{equation*}
G^{\prime}=z G z^{-1}=p\left(i_{2}\right)+q\left(i_{2}\right) i_{3} \tag{4}
\end{equation*}
$$

For $p \geqq 3, i_{3}$ is commutative with $i_{1}{ }^{2}$ and hence is in S. Thus

$$
\begin{equation*}
z G=G^{\prime} z, G^{\prime} \text { in } S \tag{5}
\end{equation*}
$$

5. Lemma 3. $i_{1}{ }^{2}, \cdots, i_{p}{ }^{2}$ are all distinct.

Suppose that $i_{r+1}^{2}=i_{1}{ }^{2}$, where r is one of $2,3, \cdots, p-1$. Then

$$
z^{r} i_{1}{ }^{2} z^{-r}=i_{r+1}^{2}=i_{1}{ }^{2}
$$

whence z^{r} is commutative with $i_{1}{ }^{2}$ and is in S. Using also (5), we see that every element of the algebra A obtained by extending S by z is of the form

$$
H_{0}+H_{1} z+\cdots+H_{r-1} z^{r-1}
$$

where each H is in S. Since S is of order $4 p$, the order of A is $\leqq 4 p \cdot r<4 p^{2}$. But A is of order $4 p^{2}$.

Suppose that $i_{r+s}^{2}=i_{s}^{2}(r>0, s>1)$. These are the transforms of i_{r+s-1}^{2} and i_{s-1}^{2} by z. Hence the latter are equal. After $s-1$ such steps, we get $i_{r+1}^{2}=i_{1}{ }^{2}$, just proved impossible.
6. Lemma 4. We have the following identity:

$$
\begin{equation*}
f(\epsilon) \equiv\left(\epsilon-i_{p}{ }^{2}\right) \cdots\left(\epsilon-i_{2}^{2}\right)\left(\epsilon-i_{1}^{2}\right) \tag{6}
\end{equation*}
$$

Note that

$$
\begin{equation*}
i_{r} \text { is commutative with } i_{r+1}, \cdots, i_{p}, \quad(r=1, \cdots, p-1) \tag{7}
\end{equation*}
$$

This is true by Assumption 2 if $r=1$. To proceed by induction, let (7) hold when $r=j$, whence $i_{i}{ }^{2}$ is commutative
with i_{k} for $k \geqq j+1$. Transformation by z shows that $i_{j}{ }^{2}+1$ is commutative with i_{k+1}, whence (7) holds when $r=j+1$.

Write v_{j} for i_{j}^{2}. As a special case of (7), v_{1}, \cdots, v_{p} are commutative. The indeterminate ϵ is commutative with every quantity of A. Thus z transforms $f(\epsilon)$ into itself. But $f\left(v_{1}\right)=0$. Hence by (2), $f\left(v_{2}\right)=0, \cdots, f\left(v_{p}\right)=0$. Let

$$
\begin{array}{rlrl}
f(\epsilon) & =\sum_{j=0}^{p} a_{j} \epsilon^{p-j}, q(\epsilon)=\sum_{j=0}^{p-1} c_{j} \epsilon^{p-1-i}, \quad a_{0}=c_{0}=1, \\
c_{j} & =a_{j}+c_{j-1} v_{1}, & (j=1, \cdots, p) .
\end{array}
$$

Then, since v_{1} is commutative with ϵ,

$$
\begin{equation*}
f(\epsilon) \equiv q(\epsilon)\left(\epsilon-v_{1}\right)+c_{p} \tag{8}
\end{equation*}
$$

By induction on r,

$$
c_{r}=\sum_{j=0}^{r} a_{j} v_{1}^{r-j}, \quad c_{p}=f\left(v_{1}\right)=0
$$

Since v_{i} is commutative with v_{1}, we obtain a true equality from (8) by replacing ϵ by v_{i}. Thus $0=q\left(v_{i}\right)\left(v_{i}-v_{1}\right)$. The second factor is not zero if $i \geqq 2$. In our division algebra we therefore have $q\left(v_{i}\right)=0$ when $i \geqq 2$.

We may repeat this argument with f and v_{1} replaced by q and v_{2}. Hence $q(\epsilon) \equiv r(\epsilon)\left(\epsilon-v_{2}\right)$, in which the coefficients of $r(\epsilon)$ are polynomials in v_{1} and v_{2}. Since they are commutative with $v_{j}, 0=r\left(v_{j}\right)\left(v_{j}-v_{2}\right)$. Hence $r\left(v_{j}\right)=0$ when $j \geqq 3$.

Proceeding similarly, we ultimately obtain

$$
f(\epsilon) \equiv\left(\epsilon-v_{p}\right) \cdots\left(\epsilon-v_{2}\right)\left(\epsilon-v_{1}\right) .
$$

7. Theorem 1. $f(\epsilon)=0$ is a cyclic equation.

By (6), $i_{1}{ }^{2}+\cdots+i_{p}^{2}$ is a number of F and hence is transformed into itself by z. But z transforms $i_{1}{ }^{2}$ into i_{2}^{2}, \cdots, i_{p-1}^{2} into i_{p}^{2}. Hence z must transform i_{p}^{2} into $i_{1}{ }^{2}$. Since z^{p-2} transforms i_{2}^{2} into i_{p}^{2}, z^{p-1} transforms i_{2}^{2} into $i_{1}{ }^{2}$ and evidently transforms i_{1} into i_{p}. Hence z^{p-1} transforms
$i_{2}^{2} i_{1}$ and $i_{1} i_{2}^{2}$ into $i_{1}^{2} i_{p}$ and $i_{p} i_{1}^{2}$. The latter are equal by by Assumption 2. Hence the former are equal. Since $i_{2}{ }^{2}$ is therefore commutative with both generators i_{1} and i_{2} of S, it is commutative with every element of S. By Lemma 1 , $i_{2}{ }^{2}=\theta\left(i_{1}{ }^{2}\right)$, where θ is a polynomial with coefficients in F. Transformation by z gives

$$
i_{3}{ }^{2}=\theta\left(i_{2}{ }^{2}\right)=\theta\left[\theta\left(i_{1}{ }^{2}\right)\right]=\theta^{2}\left(i_{1}{ }^{2}\right),
$$

if $\theta^{r}(k)$ denotes the r th iterative of $\theta(k)$ and not its r th power. By induction,

$$
\begin{equation*}
i_{r+1}^{2}=\theta^{r}\left(i_{1}^{2}\right) \tag{9}
\end{equation*}
$$

Take $r=p-1$ and transform by z. Hence

$$
\begin{equation*}
i_{1}{ }^{2}=\theta^{p-1}\left(i_{2}^{2}\right)=\theta^{p}\left(i_{1}^{2}\right) . \tag{10}
\end{equation*}
$$

Since $f(\epsilon)=0$ has these properties, it is cyclic.
8. Theorem 2. Every element of A can be expressed in one and only one way in the form

$$
\begin{equation*}
A_{0}+A_{1} z+\cdots+A_{p-1} z^{p-1} \tag{11}
\end{equation*}
$$

where each A_{j} is in S. The product any two sums (11) can be expressed as a third such sum by means of

$$
\begin{equation*}
z G=G^{\prime} z, \quad z^{p}=s, \tag{12}
\end{equation*}
$$

where G, G^{\prime}, s are all in S and are defined in (4), (5).
Since z^{p-1} transforms $i_{1}{ }^{2}$ into i_{p}^{2}, and z transforms the latter into the former, z^{p} is commutative with $i_{1}{ }^{2}$ and hence is in S. By means of (12), every element of A (to which z extends S) can be expressed in the form (11). Since S and A are of orders $4 p$ and $4 p^{2}$, two polynomials (11) are distinct unless identical.
9. Theorem 3. S is an algebra of generalized quaternions over $F(I)$ with the basis $1, i_{1}, y, i_{1} y$, where $y=i_{1} i_{2}-i_{2} i_{1}$.

Since i_{2} is not commutative with $i_{1}, y \neq 0$. Since i_{2} is commutative with $i_{1}{ }^{2}$,

$$
\begin{equation*}
y i_{1}=-i_{1} y \tag{13}
\end{equation*}
$$

Thus y is not commutative with i_{1} and hence is not a polynomial in i_{1}. We may therefore replace the basis (1) of S over F by $i_{1}{ }^{j}, i_{1}{ }^{j} y$. Thus S has the basis in Theorem 3.

By $\S 7, i_{2}{ }^{2}$ is commutative with i_{1}. Hence

$$
r=i_{1} i_{2}+i_{2} i_{1}
$$

is commutative with i_{2}. Since i_{2} is commutative with $I=i_{1}{ }^{2}, r i_{1}=i_{1} r$. Hence r is commutative with every element of S. Thus r is a polynomial $P(I)$ in I. We have

$$
2 i_{1} i_{2}=P(I)+y, 2 i_{2} i_{1}=P(I)-y .
$$

But y is commutative with I. Hence

$$
4 i_{1} i_{2}^{2} i_{1}=P^{2}-y^{2}
$$

Since $i_{2}{ }^{2}$ is commutative with i_{1},

$$
y^{2}=[P(I)]^{2}-4 I \theta(I)
$$

This fact that y^{2} is a polynomial in I and relation (13) together show that S is an algebra of generalized quaternions over $F(I)$.

The University of Chicago

[^0]: * Except for the requirement concerning even powers of ω, Assumption 1 is proved in the writer's Algebren und ihre Zahlentheorie, Zürich, 1927, pp. 262-3.

