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T E R N A R Y CHARACTERISTICS OF PRIMES* 

BY E. T. BELL 

1. Introduction. As will be seen from the proofs, the cu­
rious properties of primes given by the theorems of §2 are less 
abstruse than they seem at first sight. Tha t they are obvious 
when once the clue to their derivation is given does not, 
however, detract from their interest. 

Let JU be either of 1, 2, and X a definite one of 0, 1. We shall 
denote the equation 

(1) x2 - a[\ + (1 - \)p«]y2 - bqh2 = M2 

by its characteristic [a, b, X]. Thus [a, &, 0] is 

(2) x2 - apay2 - bqh2 = M
2, 

and [a, &, l ] is 

(3) x2 - ay2 - bcfz2 = M
2. 

To avoid separate statements, we do not distinguish the cases 
[a, &, X], X = 0, 1, until necessary. In (1), p, q, a, j8, x, y, z are 
variable integers subject only to the following restrictions: 
p} q are p r imes>2 ; a: > 0 , /3>0 are = 1 (mod 4); x>0, y>0, 
3 > 0 ; a, b are constant integers > 0 . If, subject to all these 
restrictions, 

P = P', Q = i'> a = «'> P = P'> x = *'> y = / > 2 = 2' 

is a set of values of py q> a, |8, x, ^, s for which (1) is true, we 
shall call the matrix (pf, q', a', /3', x', y', z') a solution of (1). 
Note in particular that the definitions imply that p', q' in 
each solution are pr imes>2. The equation [a, ft, X] is trans­
cendental ; a, j8 are variables. When X = 1 we may omit 
p, a, p', a' from the definitions, since their retention is then 
trivial; a solution of [a, b, l ] may be written (*, q', *, j3', 

*Presented to the Society, San Francisco Section, April 7, 1928. 
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*'» y'> s '). Solutions being matrices, their equality is defined. 
Unequal solutions will be called distinct. 

If p'', #' in a given solution are such that, for m constant 
a n d > 2 , 

P' — #o , q' s ?o , modm, £0' > 0, #0' > 0, 

we shall say that the solution has the residue (ƒ></, qo')m 

modulo m. 
A set consisting of an infinity of distinct solutions is said 

to be infinite. Infinite sets are called distinct when each of 
the sets contains an infinity of solutions not in any of the 
others. 

An integer D>0 which determines the constants a, b, and 
X, so that (1) has an infinite set of solutions will be called a 
determinant of [a, &, X]. The precise way in which D deter­
mines [a, b, X] so as to have the stated property is immaterial 
for the moment. 

Let c, ny rh s be constant integers, c > 0 , n>2, r,->0 
(7 = 1,- • -, s). Let the 5,- (j = 1,• • •, s) be distinct pr imes>2 
such that Sy is prime to c(j= 1, • • •, s) and 

ôj s ru modw, (j = 1, • • • , s) ; 

and let the Cj be integers>0. Then, if every integer D of the 
form côicl S2

C2- • • 8S
C* is a determinant of [a, ô, X], and if 

further the infinite sets of solutions appertaining to each 
pair of unequal determinants of this form are distinct, we 
shall call the set of all integers of the prescribed form a 
discriminant of [a, &, X], and write this discriminant 
{c, ricS 7VV • -, r8

c°}n. 
Our object is to find discriminants, to exhibit a characteris­

tic [a, by X] for a given discriminant, to assign the residues of 
the solutions in each case, and to classify the solutions. 

The solutions in certain infinite sets will be classified by 
separation in finite odd numbers of distinct infinite sets, 
called periods, such that all the solutions in a given period are 
derivable from a fundamental one, called the source of the 
period. These periods depend upon the following sequences 
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of integers; in the periods the integers in the sequences are 
a l l > 0 . 

Let g, h denote constant integers both different from zero. 
Then (g, h) is called the parameter of the infinity of sequences 
wn(n = 0, 1,- • •) of integers defined by 

Wn+2 = gWn+1 ~ hwn 

and a pair (w0l Wi) of initial integers. The particular pair 
of these sequences determined by the pairs of initial values 

Oo , Wi) = (0, 1), Oo , wi) = (2, g) 

are the Lucas sequences uny vn(n=i0f l ,-*-) respectively, 
for the parameter (g, h). All the periods in a given infinite 
set pertain to the same parameter (g, h); different deter­
minants in a given discriminant give periods pertaining to 
different parameters. As the periods depend upon un, vn, 
the numerous known properties of Lucas sequences can be 
applied to read off properties of solutions of [a, &, X]. For 
convenience we add references concerning un, vn* 

2. Existence Theorems. Among many others we can state 
the following three general theorems. These give con­
siderable information regarding the situation described in §1. 

There exist discriminants A such that, if D is a determinant 
in A, the following statements hold. 

THEOREM I. In addition to determining the characteristic 
[a, by X], each D determines a unique matrix (T, U) of integers 
r > 0 , Z7>0, and an odd number œ of distinct matrices 

(Pi, Ci, <xh ph Vj, W,)y (j = 1, • - , a>), 

in which Vj, Wj are integers > 0 , such that 

°in « {pi, qj, <Xj, j8y, Uun, fiVjVn/2, flWjVn/2)y 

{j = 1, • • • , co ; n = 1, 2, • • •), 

* Lucas, American Journal of Mathematics, vol. 1, pp. 184, 289; Théorie 
des Nombres, Chapter 18; Bachmann, Niedere Zahlentheorie, Kap. 2; Dick­
son, History of the Theory of Numbers, vol. 1, Chapter 17. 
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are œ distinct infinite sets of solutions of [at b, X] ; the un, 
vn(n = 0> I , - - - ) are the Lucas sequences for the parameter 
(2T/jjL, 1). The infinite set a3n (n= 1, 2, • • • ) is a period (as 
described in §1) with the source 

*n = (Pi> 9» <*/> Ph u> TVi> TWj), 

the solution <r3n being obtained from <T3I by multiplying U, TVj, 
TWj by un, Vn/vij vjvi respectively. If X = l, there is one and 
only one (q3) /3y) for each (V3-, W3). 

THEOREM I I . The D as in Theorem I also determines a 
modulus m such that all the solutions ovn(j = l,- • -, co; w = l, 
2,- • •) have the same residue modulo my and this residue re­
mains constant as D ranges over all determinants in A. 

THEOREM I I I . The matrices (ÜT, £/), and hence also the 
periods described in Theorem I, are distinct for unequal deter­
minants D in A. 

3. Specific Theorems for X = 5 = Ci = l . The relevant para­
meters to be assigned are c, r, n, which determine A, since 
5 = 1; a, by which fix [a, &, X] when X = l, and m, qQ

f
} which 

n} rf c 

(1) 4, 1, 2 
(2) 8, 1, 1 
(3) 8, 3, 2 
(4) 8, 3, 3 
(5) 8, 3, 4 
(6) 8, 5, 1 
(7) 8, 5, 4 
(8) 12, 5, 4 
(9) 12, 5, 4 

(10) 16, 3, 1 

(11) 16, 7, 1 
(12) 16, 7, 1 
(13) 16, 7, 1 
(14) 16, 7, 2 
(15) 24, 7, 1 
(16) 24, 7, 2 
(17) 24, 7, 2 
(18) 24, 7, 2 

a, b 

1, 1 
4,1 
1, 1 
4,1 
1,1 
2, 1 

1, 1 
1, 1 
9, 1 
8, 1 
1, 2 
2, 1 
4, 1 
1,1 
2,1 
1,1 
3,1 
9, 1 

w, 

8 
8 
8 
8 
8 
8 
8 
24 
24 
8 
8 
8 
8 
8 
24 
24 
24 
24 

So' 

1 
5 
5 
5 
3 
3 
3 
19 
11 
5 
3 
5 
3 
5 
5 
13 
11 
5 

1 n, r, c 

(19) 24, 11, 1 
(20) 24, 11, 1 
(21) 24, 13, 1 
(22) 24, 17, 5 
(23) 24, 17, 5 
(24) 24, 19, 1 
(25) 40, 7, 5 
(26) 40, 7, 5 
(27) 40, 11, 1 
(28) 40, 11, 1 
(29) 40, 19, 1 
(30) 40, 19, 1 
(31) 40, 23, 1 
(32) 40, 23, 1 
(33) 40, 23, 5 
(34) 40, 23, 5 
(35) 48, 31, 1 

a, b 

1, 1 
1,2 
6, 1 

2, 1 
18, 1 
9, 2 
1,2 
1, 2 
5, 2 

5, 2 
5, 2 
5,2 
1, 2 
1, 2 
1,2 
1, 2 

18, 1 

m, qó 

12, 7 
12, 5 
24, 7 
24, 11 
24, 19 
12, 5 
20, 13 
20, 17 
20, 3 
20, 7 
20, 3 
20, 7 
20, 3 
20, 7 
20, 13 
20, 17 
24, 13 
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give the residue (*, qo')m, since here po' does not occur. We 
are concerned therefore in this case with §1(3) for assigned 
values of a, b and primes q = #0' mod m; the corresponding 
values of n, r, c are useful only later in proving that the 
thirty-five shown in the table give instances of the theorems 
in §2 applied to §1(3). 

From these we see, for example, from the second and third 
columns for (24), tha t 

X2 _ gy2 _ 2q0z
2 = At2, 

in which the prime q ss5 mod 12 has infinities of solutions in 
the sense of §1, with the properties stated in §2. By the 
first column the discriminant in this case is the class of all 
positive primes = 19 mod 24. The list can be continued 
indefinitely, and likewise for the next two. 

4. Specific Theorem for X = 0, 5 = 1. As the case X = 0 is not 
fundamentally different from X = 1, we give but one example. 
The discriminant in the following is the class of all positive 
primes = 1 mod 8 ; the primes p, q are both = 3 mod 8 : 

x2 - 2p<*y2 - qH2 = ix2. 

5. Specific Theorems for X = 1, s = 2, Ci = C2 = 1. In each of 
the following the constant c is unity, so we shall not tabulate 
it. In the third column the significance of the parenthesis 
referring to values of q0' is that one of the two values in the 
parenthesis is permissible for the accompanying modulus m. 
Thus we have the entry 40, (11, 19) in (4); hence q in 

ny fj, ri 

(1) 8, 1, 3 
(2) 24, 5, 5 
(3) 24, 7, 7 
(4) 40, 3, 7 
(5) 40, 3, 23 
(6) 40, 7, 27 
(7) 40, 23, 27 
(8) 120, 31, 31 
(9) 120, 31, 79 

(10) 120, 79, 79 

a, b 

1, 2 
12, 1 
12, 1 
10, 1 
10, 1 
10, 1 
10, 1 
60, 1 
60, 1 
60, 1 

m, g0' 

8, 5 
24, 13 
24, 13 
40, (11, 19) 
40, (11, 19) 
40, (11, 19) 
40, (11, 19) 

120, (61, 109) 
120, (61, 109) 
120, (61, 109) 
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§1(3) is a prime of one of the forms 11 or 19 mod 40 for this 
example. Since Ci = c2 = 1 it is necesary in the first column, 
referring to the discriminant, to give only n, t\y r2(c = l, as 
stated). 

These illustrate the fact that a given [a> b, X] may have, 
several discriminants. There are numerous examples in 
which 5 > 2 , but we shall omit these and pass to the proofs. 

6. Proofs, All of the preceding results become obvious on 
combining two simple remarks. The notation is as in §§1, 2. 
Take for (2H, U) the fundamental solution of the Pellian 
equation t2 — Du2=fi2. Resolve D into the form apa^2Jr 
bq^T]2, where £, 7] are in tegers>0. The rest follows at once. 
The resolution of D, combined with the successive solutions 
of the Pellian equation, obtained in the usual manner from 
(7", Z7), furnish the periods in §2. There are in each instance 
co resolutions of D of the prescribed kind, and hence at least 
one. Tha t such resolutions exist is known from the ingenious 
method of Bouniakowsky, or independently from the 
general arithmetical formulas obtained by paraphrasing 
identities between elliptic and theta functions. The latter 
method provides an inexhaustible source of these results and 
of others of a similar nature relating to forms in more than 
two variables. Bouniakowsky's method was exploited by 
Liouville; the specific theorems in §§3-4 can be verified by 
comparing with Liouville's resolutions of the corresponding D 
in volumes 3-5 of the second series of his Journal. I believe 
that proofs for these have not been published; on another 
occasion I will supply the details. 
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