NOTE ON A CONVERGENCE PROOF

BY DUNHAM JACKSON

Some years ago I published a particularly simple proof of the convergence of the Fejér mean of the Fourier series for an arbitrary continuous function.* I did not notice until some time later that the same proof had already been given by Haar† in his thesis. The present note constitutes a renewed attempt to contribute something to the theory of the method in question, by applying it to a problem which is not treated by Haar, in the passage cited at any rate. The substance of the note consists in the proof of the following theorem:

Let f(x) be an arbitrary continuous function of period 2π . With each positive integral value of n, let an integer m_n be associated, subject merely to the condition that $m_n \ge n$, and let

(1)
$$\tau_n(x) = \frac{1}{nm_n} \sum_{i=1}^{m_n} f(t_i) \frac{\sin^2 \frac{1}{2} n(t_i - x)}{\sin^2 \frac{1}{2} (t_i - x)},$$

where $t_i = 2i\pi/m_n$. Then $\tau_n(x)$ converges uniformly toward f(x) as n becomes infinite.

The reasoning is given in full, so that it can be understood

^{*} Note on a method of proof in the theory of Fourier's series, this Bulletin, vol. 27 (1920-21), pp. 108-110.

[†] A. Haar, Zur Theorie der orthogonalen Funktionensysteme, Dissertation, Göttingen, 1909; p. 29; reprinted in Mathematische Annalen, vol. 69 (1910), pp. 331-371; pp. 353-354.

[‡] For the case $m_n = n$, see D. Jackson, A formula of trigonometric interpolation, Rendiconti del Circolo Matematico di Palermo, vol. 37 (1914), pp. 371-375; S. Bernstein, Sur la convergence absolue des séries trigonométriques, Comptes Rendus, vol. 158 (1914), pp. 1661-1663; L. Fejér, Über Interpolation, Göttinger Nachrichten (1916), pp. 66-91; pp. 87-91. For a corresponding generalization of the ordinary formula of trigonometric interpolation, see D. Jackson, Some notes on trigonometric interpolation, American Mathematical Monthly, vol. 34 (1927), pp. 401-405. For the underlying idea of the present treatment, see also Hahn, Über das Interpolationsproblem, Mathematische Zeitschrift, vol. 1 (1918), pp. 115-142.

without reference to Haar's paper. By a well known identity,

$$\frac{\sin^2 \frac{1}{2}n(t_i - x)}{\sin^2 \frac{1}{2}(t_i - x)} = n + 2(n - 1)\cos(t_i - x)$$

$$+ 2(n - 2)\cos 2(t_i - x) + \dots + 2\cos(n - 1)(t_i - x)$$

$$= n + 2\sum_{k=1}^{n-1} (n - k)(\cos kt_i \cos kx + \sin kt_i \sin kx),$$

so that $\tau_n(x)$ is a trigonometric sum of order n-1 in x. Since $n-1 < m_n$, and since

$$\sum_{i=1}^{m_n} \cos kt_i = \sum_{i=1}^{m_n} \sin kt_i = 0$$

for $0 < k < m_n$, it is seen that

(3)
$$\frac{1}{nm_n} \sum_{i=1}^{m_n} \frac{\sin^2 \frac{1}{2} n(t_i - x)}{\sin^2 \frac{1}{2} (t_i - x)} = 1.$$

This may also be expressed by saying that if $f(x) \equiv 1$, the corresponding $\tau_n(x)$ is identically equal to 1 for all values of n.

To take another very special case, let f(x) be of the form $\cos px$, where p is a given positive integer, and let the form of the corresponding $\tau_n(x)$ be determined with the aid of (2). The expression $\sum_i \cos pt_i \sin kt_i$ is equal to zero for all values of k. The question ultimately at issue being one of convergence for $n = \infty$, it is sufficient to consider values of n > 2p. Then $p < m_n/2$, and $\sum_i \cos^2 pt_i = m_n/2$. Under the hypotheses, p+n-1 may or may not be less than m_n . If $p+n-1 < m_n$, $\sum_i \cos pt_i \cos kt_i = 0$ for all the values of k (including k=0) that come into consideration, except k=p, and $\tau_n(x)$ reduces to a single term:

(4)
$$\tau_n(x) = \frac{n-p}{n}\cos px.$$

If $p+n-1 \ge m_n$, there is one other term, resulting from the fact that $\sum_i \cos pt_i \cos (m_n-p)t_i = m_n/2$, and

(5)
$$\tau_n(x) = \frac{n-p}{n} \cos px + \frac{n-m_n+p}{n} \cos (m_n-p)x$$
.

But $n-m_n \le 0$, and $(n-m_n+p)/n \le p/n$, which approaches zero as n becomes infinite. So, whichever of the expressions (4), (5) may be in force from time to time as n takes on successive values, it is clear that

$$\lim_{n=\infty} \tau_n(x) = \cos px,$$

uniformly for all values of x. There is a corresponding proof if $f(x) \equiv \sin px$.

On the other hand, the $\tau_n(x)$ corresponding to the sum of any finite number of functions is the sum of the τ 's constructed for the various functions separately, and converges if each of the latter τ 's is convergent. So $\tau_n(x)$ converges uniformly toward f(x), whenever f(x) itself is identically a trigonometric sum.

In transition, it is to be noted from (1) and (3) that $|\tau_n(x)| \leq M$, if M is the maximum of |f(x)|.

Finally, let f(x) be an arbitrary continuous function of period 2π . Let ϵ be an arbitrary positive quantity. By Weierstrass's theorem there exists a trigonometric sum T(x) such that

$$|f(x) - T(x)| \le \epsilon/3$$

for all values of x. If $\tau_n(x)$ is defined by (1), and if $\tau_{n1}(x)$ is similarly formed with $T(t_i)$ in place of $f(t_i)$, it follows from the preceding paragraph, applied to the difference T(x) - f(x), that

$$|\tau_{n1}(x) - \tau_n(x)| \le \epsilon/3$$

for all values of n and x. And by the italics at the end of the second paragraph preceding,

(8)
$$|T(x) - \tau_{n1}(x)| \leq \epsilon/3$$

if *n* is sufficiently large. For such values of *n*, by combination of (6), (7), and (8), $|f(x) - \tau_n(x)| \le \epsilon$, which is equivalent to the conclusion of the theorem.

THE UNIVERSITY OF MINNESOTA