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SOME PHASES OF DESCRIPTIVE GEOMETRY* 
BY W. H. ROEVER 

The purpose of this paper is to recall those phases of 
descriptive geometry which are involved in the construction 
of adequate pictures of space objects. These remarks are 
particularly addressed those who attempt to use pictures 
and thus admit a need for them. To quote from Klein, 
"Is it not as worthy an object of mathematics to be able 
to draw correctly as to be able correctly to calcul ate ?" 

The need for descriptive geometry was probably first 
felt by the artist and the architect. The former was in­
terested in conveying by means of his drawings a clear 
notion of the spatial form of the object represented. The 
latter, on the other hand, made use of his process of 
drawing, not only to instruct the builder as to the form 
and size of the objects which he represented by his pic­
tures, but, in addition, to solve by means of plane con­
structions the problems of space which were encountered 
by the mason and carpenter. Thus the art of stereotomy 
was developed in the Middle Ages. In separating the 
geometric constructions of this art from their application, 
Frézier, in 1738, laid the cornerstone of modern descrip­
tive geometry. It was Gaspard Monge (1746-1818) 
however, who developed this new constructive geometry 
of space so as to elevate it to the dignity of a pure science 
to which he gave the name descriptive geometry. 

At this point let us observe that the process of drawing 
can be performed only upon a surface, and, in particular, 
upon a plane surface. It thus becomes possible to exe­
cute graphically, i. e., with pencil, ruler and compasses 
(instruments of the geometer), the following fundamental 
operations of plane geometry (postulates of construction): 

* An address delivered before the Southwestern Section of this 
Society at Ames, Iowa, November 29, 1924, by invitation of the 
program committee. 



1925.] DESCRIPTIVE GEOMETRY 541 

I 1. To determine the (straight) line connecting two 
points. 

2. To find the point of intersection of two lines. 
3. To construct a circle of given center and radius. 

The corresponding fundamental operations of space are: 
II 1. To find the line connecting two points of space. 

2. To find the line of intersection of two planes. 
3. To find the plane determined by a point and a line. 
4. To find the point in which a line pierces a plane. 
5. To construct a sphere of given center and radius. 

There is, however, no process in space which is analogous 
to that of drawing in the plane. One might thus be 
tempted to say that the problems of space are in­
capable of graphical solution. In the art of stereotomy, 
solutions of problems of type II were virtually reduced 
to those of problems of type I, thus opening the way for 
the graphical solution of space problems.* 

The principal purposes of descriptive geometry thus 
appear to be the following: 

1. Representation of the objects of space by means of 
figures which lie in a plane (or upon a surface). 

2. Solution of the problems of space by means of con­
structions which can be executed in the plane. 

The criterion of what shall be meant by a good plane 
representative of a space object has, more or less un­
consciously, been taken to be that the plane representative 
ivhen properly placed, shall produce upon the retinal surface 
of the eye an image which differs but little from that 
produced by the object itself. Since the optical properties 
of the eye may be compared with those of the camera 
obscura, it is easy to seef that the above criterion may be 
satisfied, at least approximately, by a plane picture which 

* See Gino Loria, Vorlesungen über Darstellende Geometrie, Leipzig, 
Teubner, 1907. 

f See A. Schoenfiies, FAnfilhrung in die Hauptgesetze der Zeich-
nerischen Darstellungsmethoden, Leipzig, Teubner, 1908. 
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is a central (or, by accommodation, also a parallel) pro­
jection. A photograph is such a plane picture. 

In order that the solution of a space problem may be 
made possible by a construction in the plane, it is essential 
that there exist an unambiguous correspondence betiveen space 
and the plane. To make this clear, we will observe that a 
single projection does not satisfy this requirement. For, 
while to each point of space P there corresponds a definite 
projection P' on the picture plane, it is not true, conversely, 
that to each point of the projection there is a definite 
point of space. Hence, in general, a single projection does 
not suffice if no information concerning the object projected 
is known. The reason that a single projection, like a photo­
graph, may convey an adequate notion of an object (like a 
building) is because we have some information about the 
object, such, for instance, as the perpendicularity of some 
of its edges. If, however, such a relation concerning the 
object to be represented is not known, or not true, one 
projection of it is not sufficient to convey to the mind an 
adequate notion of its form. The projection of a cube 
might, for instance, also be the projection of any hexahedron 
of which the vertices are on the lines connecting the vertices 
of the cube with the center of projection. That two 
projections do, in general, suffice to set up an unambiguous 
correspondence between space and the plane, is illustrated 
by the stereoscope, which enables the user to combine the 
images of two pictures taken from different points of view 
and thus obtain the impression of solidity or relief. 

Let us now illustrate several of the principal methods 
of descriptive geometry, showing how, in each of these 
methods, use is made either of two projections or of one 
projection and information about the object projected. For 
this purpose let us use, as an object to be represented, 
a solid of revolution obtained by revolving around one of 
its sides 0" Z" the part O" D" E" F" Z" of a rectangle 
which remains after a corner has been removed by a 
circular cut E" F" (see Fig. II). The solid of revolution 
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thus obtained is bounded by two planes (generated by O" D " 
and Z" F"), by a circular cylinder (generated by D" E") 
and by a torus (generated by the circle E" F"). Let us 
further suppose that points have been taken on the circle 
E" F" in such a way that their (orthographic) projections 
on the line O"Z" are equally spaced. In the revolution, 
these points generate circles of latitude of which the planes 
are perpendicular to the axis O"Z" and are equally spaced. 

Let us now choose several planes on which to project 
our solid. As a first plane of projection we will take the 
plane base n± (generated by O"D") and as a second plane 
of projection, a plane n2 parallel to the axis of revolution 
O"Z". We will think of n2 as coincident with the plane 
of our drawing, and of nx as intersecting n2 in the ground 
line #i2. Then we will think of n^ as rotated around g12 

until it becomes coincident with n2. The plane of the paper 
(TV2) is then a Mongean drawing plane. In it Fig. I is the 
orthographic projection of our solid on nx and Fig. II is 
that on n2. Together these figures constitute a Mongean 
representation of our solid. It is easily seen that one of 
these projections alone is not sufficient, but that the two 
are sufficient. Thus we see that associated with a point 
of space P there are two points P ' , P" . in the drawing 
plane which lie on the same perpendicular to the ground 
line, and, conversely, to such a pair of points in the drawing 
plane there corresponds a point in space (namely, the point 
with which was associated this pair). From this it follows 
that associated with a line of space p there is a pair of 
linespf,p" of the drawing plane; and conversely, in general, 
to a pair of lines in the drawing plane, there corresponds 
a line in space (namely, the line with which was associated 
this pair). A line of space p instead of being represented 
by its projections (p', p") may also be represented by the 
points (P1? P2) (traces) in which it pierces the planes of 
projection nu and n2 (see drawing). It is the extension 
of the latter method which is used to represent a plane. 
Thus a plane ^ is represented by the lines (m1? m2), (traces) 
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Fig. Ill 
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in which it cuts the planes nx and n2 (see drawing). Since 
these traces necessarily intersect on the ground line gX2j 

it follows that a general plane is adequately represented 
by two lines of the drawing plane which intersect on the 
ground line. It is thus evident that the Mongean method 
of representing space (by means of its elements, points, 
lines, planes) in the (drawing) plane, possesses the property 
of unambiguous correspondence. 

A circle of latitude, such as that generated by the point 
I"', is represented by the circle i' in Fig. I and the 
straight line i" in Fig. II. The corresponding representatives 
of other circles of latitude are also shown in these figures. 
These circles might be regarded as contour (level) lines if 
we now think of our solid as a mountain peak. If we 
attach to the circles in Fig. I numbers (•.., 2, 3, 4, • • •) 
representing the distances of these contour lines above the 
(datum) plane TV1J Fig. I becomes a tomographic represent­
ation of our solid. In this method, a point is adequately 
represented by its (orthographic) projection and a number 
indicating its altitude. A (straight) line is represented by 
its projection and a scale, the intervals of which are the 
projections of the intervals into which the line in space 
is divided by equally spaced level planes; and finally, a 
plane is represented by its line of greatest slope. Thus, 
in the drawing, the point P ' with the accompanying number 
(4) represents the point P (represented in the Mongean 
method by the pair of points P ' , P"), the line p' with the 
accompanying scale (• ••, —2, — 1 , 0, 1, 2, •••) represents 
the line p (represented in the Mongean method by the pair 
of lines p', jp"), and the double line m' with the accom­
panying scale (•••, —2, — 1 , 0, 1, 2, . . .) represents 
the plane ^ (represented in the Mongean method by the 
traces m±, rn2). This,method of representation also possesses 
the property of unambiguous correspondence. 

Let us now find the (orthographic) projection (Fig. Ill) 
of our solid on a plane n = [gt,g2] which is inclined to 
7tl9 but perpendicular to n2. The horizontal trace gx of 

35 
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it will be perpendicular to g±2. We will then think of the 
plane n as rotated around its vertical trace g2 (just as nx 

was rotated around g12) until it comes into coincidence 
with the plane of the drawing 7i2. By this rotation the 
trace gx assumes the new position gl9 perpendicular to g2 

at the intersection of g2 with gl2. The two figures, Fig. II 
and Fig. Ill, together constitute another Mongean represent­
ation of our solid, with g2 as the corresponding ground line. 

The points of Fig. I l l may be obtained from those of 
Figs. I and II by a knowledge of the following facts: 

If Q denote a general point of space and Q', Q", Q,n 

its projections on TVX, TT2, n, respectively, then just as 
Q' and Q" lie on the same perpendicular to the ground 
line g12 so Q" and Q,ff lie on the same perpendicular to 
the ground line g2. Furthermore, since the points Qr and 
Q'" are at equal distances from g12 and g2 respectively, 
a line through Q' parallel to g12 meets a line trough Qfff 

parallel to g2 on the bisector h of the angle formed by 
gx and gt (see the drawing). Thus it is easy to obtain 
point by point the projection on TV of the circular edges 
of our solid (generated by D", E" and F"). 

In order to obtain the other bounding curve of Fig. Ill, 
let us observe that if we regard the rays which project 
our solid on the plane n as rays of light, this bounding 
curve is the projection on n of the line of shade, i. e., the 
curve which separates the illuminated portion of our solid 
from the unilluminated portion. Points of such a line of 
shade may be determined for a surface of revolution by 
the following well known construction. A surface of revo­
lution may be regarded as the envelope of a one-parameter 
family of spheres of which the centers lie on the axis of 
revolution. Each sphere of this family has for its line of 
shade a great circle whose plane is perpendicular to the 
direction of the illuminating rays. On the other hand, each 
such sphere has contact with the envelope along a common 
circle of latitude of these two surfaces. The points in 
which these two circles intersect are points of the line of 
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shade of the envelope. To find the center of the sphere 
having contact with our surface along the circle of latitude 
generated by the point J", we erect at I" in the drawing-
plane a normal to the meridian curve E" T' F". This cuts 
the axis 0" Z" in the required center K". Through K" we 
then draw a line parallel to g2 > since the rays of light are 
perpendicular to the plane n. This is the projection on 
7t2 of the line of shade of the sphere of center K, and 
cuts the corresponding projection i" of the circle of contact 
in the point L". This point is the vertical projection of 
two points of our line of shade. The horizontal projections 
of these points are found by drawing through L" a line 
perpendicular to g12 cutting the circle i' in the points L[ 
and L'2. The corresponding projections £i", I!{' on the 
plane n (Fig. Ill) are then found by the construction given 
in the preceding paragraph. Thus the bounding curves of 
Fig. I l l corresponding to the toroidal surface of our solid, 
may be found point by point. Apparently these curves 
stop abruptly at the points M"f and MT* However, these 
points are not "points d'arrêt", but they are cusps of the 
complete curve of which the remaining portion if"' 
N'" i f 2" is the bounding curve of the hidden (back) side 
of the torus. In fact this curve is a parallel to the ellipse 
into which the axial circle of the torus is projected on 
the plane n. For, the bounding curves of the (orthographic) 
projection of any tubular surface (i. e., envelope of a one-
parameter family of spheres of constant radius) are parallels 
to the corresponding projection of the axial curve (i. e., 
locus of centers of enveloped spheres) of this surface, and 
the torus is a tubular surface with a circular axial curve. 

With the same system of parallel projecting rays which 
were used to obtain the orthographic projection (Fig. Ill) 
of our solid on the plane n, let us also obtain the oblique 
projection (Fig. IV) of this solid on the plane n1. In order 
that Fig. IV may not be superimposed on Fig. I we will 
drop the former down a little distance on the paper. Hence, 
now instead of using Q' as the horizontal projection of Q, 

35* 
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we will take Q' as this projection. Then, to obtain the 
required oblique projection QIV of the point Q we merely 
find the points in which the ray r (r', r") through the point 
Q (Qf, Q") pierces the plane n. 

Since the edges, and other circles of latitude, of our 
solid are parallel to the plane of (oblique) projection, each 
of these circles projects into an equal circle and all that 
is needed is merely to find the (oblique) projections of the 
centers of such circles. The envelope of the circles thus 
obtained is the bounding curve of the (oblique) projection 
(Fig. IV) of our solid. But this may be otherwise obtained 
by merely finding (as for the point Q) projections of points 
L of the line of shade. 

If in Fig. IV (as in Fig. I) we attach numbers to the 
circles indicating the altitudes of the planes of the circular 
sections of which these circles are the (oblique) projection, 
Fig. IV alone is an adequate plane representation of our 
solid. This representation has the advantage over that 
given by Fig. I with the corresponding attached numbers, 
in that it conveys with less effort, on the part of an 
observer, a notion of the spatial form represented. 

In a similar manner, Fig. I l l with numbered ellipses 
(not drawn) into which the circles of latitude of our solid 
project (orthographically), serves as an adequate plane 
representation of our solid. 

However, instead of drawing these ellipses in Fig. Ill, 
or the circles in Fig. IV, we might merely give the scale 
(Ofn Zm in Fig. Ill, 01V Ziy in Fig. IV) into which the 
vertical scale 0 Z (shown in true size in Fig. I) projects. 
In addition to this scaled axis {0,n Z'" in Fig. I l l or 
01Y Z1Y in Fig. IV) let us now take two other scaled axes 
(O" X!", 0" Ym in Fig. I l l or 01VXIV, 01V YIvm Fig. IV), 
these being the projections of space axes OX and 0 Y, each 
bearing the scale of OZ and perpendicular to each other 
and to OZ. In addition to the projection of the general 
point Q {Qm in Fig. I l l or QIV in Fig. IV), let us find 
that of the orthographic projection Q of the point Q on the 
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plane % (Q"; in Fig. I l l or QIV in Fig. IV). Then this pair 
of points (Q"', Q"' in Fig. I l l or QIV QIV in Fig. IV) is 
sufficient to represent adequately a point of space Q. For 
we can find from the three axonometric axes (0"' X'", 
O" Y", Om Zm in Fig. I l l or 0IVXIV, 0IVYIV, 0IVZIvm 
Fig. IV) the coordinates of the point Q in space. 

We thus have the axonometric method of representation 
(orthographic in Fig. Ill, oblique in Fig. IV), in which 
two points on a line parallel to one of the axonometric 
axes represent adequately a point of space. Likewise, in 
general, two lines of the picture plane represent a line of 
space, and, finally, a plane of space is adequately represented 
by two lines of the picture plane which intersect on one 
of the axonometric axes. 

While Figs. I l l and IV were obtained by Mongean 
processes from the Mongean representation consisting of 
Figs. I and II, they may be obtained directly by the 
axonometric method. In the use of this method, one must 
be able to determine the scales when the directions of the 
axes are given. The relationship which is involved between 
these angles and scales is, in the case of orthographic 
axonometry, expressed by the following theorem. 

THEOREM. Any two conjugate diameters and the minor 
axis of an ellipse may he regarded, as far as directions are 
concerned, as the orthographic projection on the plane of 
the ellipse of three mutually perpendicular axes] if these axes 
be taken as cartesian axes and the plane of the ellipse as 
the picture plane, the ratios borne by the halves of the 
chosen conjugate diameters and the focal distance of the 
ellipse to the half major axis of the ellipse are the fore­
shortening ratios, i. e., the numbers by which the scales on 
the space axes must be multiplied in order to obtain those 
on the axonometric axes. This relationship is indicated in 
Fig. Ill, in which the ratios of 0"' A"', O" B'"y Om C" 
to 0'"(A) are the foreshortening ratios. 

In the case of oblique axonometry, however, one may 
choose at pleasure both the angles and the scales. The 
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truth of this assertion is contained in the following famous 
theorem, which is due to Pohlke. 

POHLKE'S THEOREM. Three straight-line segments of 
arbitrary lengths in a plane, draivn from a point and 
making arbitrary angles tvith each other, can be regarded 
as a parallel projection of three equal segments draivn from 
the origin on three rectangular coordinate axes; however, 
not more than one of the given segments or one of the 
given angles can vanish*. 

Pictures of the type of Fig. I l l and Fig. IV make more 
of an appeal than do those of the type of Figs. I and II. 
In the case of most of the objects of architecture and 
technology there are among the bounding surfaces certain 
mutually perpendicular planes. These planes, or parallel 
planes, are usually selected as the Mongean planes of 
representation. Thus certain plane faces appear merely 
as lines, and hence these projections do not convey as 
easily a notion of the spatial form of the objects as do 
projections on planes not parallel to any of the mutually 
perpendicular planes. Hence, here also, pictures of the 
type of Fig. I l l and Fig. IV, which can easily be made 
directly by the axonometric method, prove very desirable. 

All of the methods described in this paper possess the 
property of unambiguous correspondence. In each is given 
the plane representative of the space elements: point, line, 
plane. The first four of the space operations II thus have 
their counterparts in the picture plane and hence all of 
the three-dimensional problems of pure geometry of position 
can be solved in the plane by each of these methods. The 
fifth of the operations II can, in like manner, be replaced 
by the third of operations I, and thus also is made possible 
a graphical solution of all perpendicularity and metrical 
problems of space by means of constructions in the plane. 

WASHINGTON UNIVEESITY, ST. LOUIS. 

* For a collection of proofs of this theorem see Wendling, Der 
Fundamentalsatz der Axonometrie, Zurich, Speidel, 1912. 


