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REDUCTION OF EULER'S EQUATIONS 
TO A CANONICAL FORM* 

BY J. H. TAYLORt 

1. Introduction. As a by-product of the preparation of an 
earlier paper by the author, A generalization of Levi-Civita?s 
parallelism and the Frenet formulas, Dissertation, University 
of Chicago, 1924, J two useful methods of solving for the 
second derivatives in Euler's equations associated with the 
problem of minimizing an integral were discovered. In 
this paper these two methods are presented in detail. 
Whereas it appears at first that the assumptions required 
to effect the solution in the two instances are quite diffe­
rent, it is here shown that in each of the two cases the 
assumptions which are made may be replaced by the sup­
position that the F{ function of the calculus of variations 
does not vanish. 

2. The Euler Equations. Suppose that 

xcc _ 2j«(w)? th<u<ii2, {cc = 1, . . - , n), 

are the equations of one of a class of curves joining two 
fixed points in an n-space, and let us consider the problem 
of selecting that curve of the class which gives to the 
integral 

1 = I F{xj x')du 

its minimum value. Here x and x = dxl du stand for 
the sets 00 • * * * « 00 and x' , • • •, xn respectively. It will 
be assumed that F satisfies the homogeneity condition 

(1) Fix, xx!) = xF(x, x), x>0. 

* Presented to the Society, October 25, 1924. 
t National Besearch Fellow in Mathematics. 
t TRANSACTIONS OF THIS SOCIETY, vol. 27 (1925). 
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As a consequence of this it follows that 

(2) Fax'a = F, FafPr = 0, 0* = 1, • •., n), 

where the notation is Fa = dFldx"*, Fap = d2Fldxfadx'^ 
and where we employ the convention that each index letter 
which appears twice in the same term is understood to 
indicate a summation with respect to that letter from 1 
to n as is customary in tensor analysis. Prom the second 
of equations (2) it follows that unless # ' E E : 0 , the deter­
minant | Fap | = 0. 

The Euler differential equations defining the extremals 
for the integral I are 

, - d ^ dF , , « , 9 * > ,a dF A 

These equations are not independent but satisfy the relation 

(4) IF, x"a+dF^r——W = o 
which is easily verified by differentiating the identity 
FffrfP = F with respect to u and applying (2). Let us 
suppose now that the parameter u has been so chosen that 
along our solutions of equations (3) we have F(x, x') = 1. 
Clearly such a selection is always possible if F 4= 0 along 
the solution, as we shall suppose, with the aid of the 
homogeneity condition (1). Since the determinant of coef­
ficients I Fttp I vanishes we cannot solve (3) for the second 
derivatives by the usual process. Consider then the solu­
tion of the following system of equations 

dF, dF 
Ffifl + F/Pv + -^fx - w = O 

(5) ; 
iax + "T~^ = °-

dx 
It will be noticed that these differ from (3) in the intro­
duction of an auxiliary variable w, and the adjoining of 
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an equation obtained by differentiating F— 1. We shall 
assume that the determinant of coefficients 

(6) 

is not zero, and hence that the equations (5) may be solved 
for x'fC\iv as functions of (x,xr). From (4) it follows at 
once that w = 0, and therefore that the solutions xf/CC 

of (5) are also solutions of (3).* 

3. The F± Function of the Calculus of Variations. If we 
suppose the rank of \Fap\ to be n—1, we have from the 
second of (2) 

Fu 

F21 

Fnx 

Ft 

F12 • 
F22 

•t'n2 

F2 • 

• • Fln 

•ft zn 

tnn 

•• Fn 

Fx 

F2 

Fn 

0 

* ' l Jn 
(fi = l , . - . , n ) , 

where F^a denotes the cof actor of Fpa ^ j ^ ^ j 
multiplying hese ratios by x'P and making use of the 
symmetry 

F<*P = F^a 

it is seen that we may define a function Fx by the equations 

(«, fi not summed) 

or 
CO x'"%<tFt 

FV 

FaP. 

The usual notation for this function is Fly but Fi is used 
here to avoid confusion with F± = dF/dx'\ From (7) it 
follows that 

FaF(lx
,ax'Pl\ 

* This method of solution was suggested by an analogous scheme 
used by Mason and Bliss, The properties of curves in space which 
minimize a definite integral, TRANSACTIONS OF THIS SOCIETY, vol. 9 
(1908), p. 443. 
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and, by (2), this becomes 

Hence 

(8) Fl ~ (F? 

-Fn 

Fsl 

F%1 

Ft 

F\2 

F22 ' ' 

-b n% 

F2 . . 

Fm 

F2n 

•E nn 

Fn 

F 
F, 

Fn 

0 

That is, the determinant (6) differs from the Fi function 
by a non-zero factor. 

4. A Second Method of Solution. Let a function ƒ (x,xf) 
be introduced by 

(9) f(x,x') = ^F*{x,x'). 

The homogeneity condition is now expressed by 

(10) f(x,xx') ---= x*f(x,x'), *>( ) . 

From (9) and (10) the following relations are readily deduced, 
the subscripts denoting as before the partial derivatives 
with respect to the corresponding x' variables : 

ftp'" = 2/> fvBfd" 

(11) 

x — 2 —— 
dxfl dxP 

fu FF a, 

ƒ/,, 

dxr ' 8 ^ : 

F' 
Fa 

F 

3/« 

F s 

dfK = 3 F 9 i ^ ^ « ^ _&»?__/« 9 / 
9a:/» " t o / ^ 9 a / ' 9rf F 'F3"dxp' 

The Euler equations are 

W + ^'-Wr pa dxa dxfi 
0. 
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or 

f^'+'A*"- df 

~F~ 
dxP 

If again we suppose the independent variable to be so selected 
that .F=l, the right member reduces to zero and the 
equation becomes 

- " « - L J ^ V - PL 0. 

By (11), this may be written in the form 

The question of the solution of these equations for the 
second derivatives forces our attention upon the deter­
minant \fap\. 

The determinant in question is 

F1Fl + FFll9 F^ + FFu, . . . , FiFn + FF* 

FlvFi + FFnU FnFo+FFnz, . . . , FnFn+FFm 

Since 

the determinant reduces to 

l\Fx, FF12, . . . , FF1U 

Fnb\, FFr,1, •••, FFn 

FFn, F1Fi, FFl3, •••. FF, In 

\FFM, FnF2, FFn,, ..-, *!F„ 

+ • • • + 
FFn, ••-, FF,n-i, FiF„ 

-=. F>^\F,F,tF
al+ F,F„.F"'2-\ h FJW"1} 

= F^FnFjF"'*. 
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Hence 

^ 1 2 ' 

^ 2 2 

Fn2 

F2 • 

• • Fln 

' • F2n 

' ' Jl'nn 

•• Fn 

Ft 

Fa 

Fn 

0 

which is the same as the F\ function except for a non­
zero factor. If now we assume as before that the Fi 
function is different from zero, and therefore | / t t / J 1410, 
the solutions of (12) may be obtained in the form 

(13) x»
k = ^ripx'Cix/P, 

where rap{x, x') is a function formed from 
precisely the same manner as the Christoffel symbol of 
the second kind {aft, A} is formed from the quadratic form 
representing the square of the length element of a Riemann 
geometry. The explicit formulas for these coefficients are 
rap(x,xr) = /^[aftjfi], where f^ is the element of the 
reciprocal matrix of fap corresponding to the term f^a, and 

The method of obtaining the solution of (12) in the form (13) 
is formally exactly the same as that used in obtaining the 
equations of the geodesies in a Riemann space.* 

It may be remarked, in terms of the concepts of 
parallelism and curvature, as developed in the author's 
thesis mentioned in § 1, that along a geodesic the tangent 
to the geodesic remains parallel to itself, or in other words 
that a geodesic is a curve of constant direction. A geodesic 
is also characterized as a curve of zero first curvature. 

PRINCETON UNIVERSITY 

* See F. D. Murnaghan, Vector Analysis and the Theory of Relativity, 
1922, pp. 89-90. 

\fuf\ = - i ^ - 1 


