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SOME MEAN-VALUE THEOEEMS 
CONNECTED WITH COTES'S METHOD OF 

MECHANICAL QUADEATURE 
BY D. V. WIDDER 

1. Introduction. It is the purpose of this paper to prove 
several mean-value theorems whose importance in the problem 
of mechanical quadrature will appear later. 

2. Extension of a Theorem of Birkhoff. The following 
theorem has been proved by G. D. Birkhoff* for the cases 
n = 1, 2, 3, 4, 5. The proof was made by computations 
based on tables computed by Cotes. The method is not 
applicable to the general case. 

THEOREM I. A function u(x) is continuous with its first 
2n-\~2 derivatives in an interval (a, b), and its (2n-\-2)th 
derivative itself possesses a derivative for every value of x 
between a and b. If the function vanishes at the points 
a and b, and if its first derivative vanishes at 2n-\-1 points 
of the interval, equally spaced and including the end points 
a and b, then the (2n-{-3)th derivative of the function 
vanishes between a and b. 

By a successive application of Kolle's theorem it may 
be inferred directly that n(2n+1) (x) must vanish in the 
interval (a, b), and that without use of the hypothesis that 
the points in question are equally spaced. It is important 
to note, however, that if the points are not equally spaced 
the conclusion of the theorem is not valid. This fact is 
made clear by a simple example: 

u(x) = (x2 — 4)2(4x — 1). 
Here 

u{2) = u(—2) = u'{2) = u\—2) = u\l) = 0. 

Yet the fifth derivative of u(x) is a constant not zero. 

* G. D. Birkhoff, General mean-value and remainder theorems, 
TRANSACTIONS OF THIS SOCIETY, Vol. 7 (1906), p. 131. 
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Suppose that the 2 n + l equally spaced points have co­
ordinates and suppose the 
points arranged from left to right on the line in order of 
increasing indices. 

Then 

We first make a linear transformation of the independent 
variable transforming the points in question into the points 
—n, —M + l, • • •, — 1 , 0,1, - • -, n—1, n. Clearly, if the 
theorem is valid for this set of points, it is valid for the 
original set. We may now base our proof on a lemma 
proved by J. F. Steffensen. * 

LEMMA. If m and n are any positive integers, then the 
function 

X X 

x(x*—l){x2—2'2) • • • (x2—n2)dx 

does not vanish in the interval —m<x<<m. 
The proof may readily be supplied by geometrical con­

siderations. We may state our hypotheses on u(x) as follows : 

u{—n) = u (n) = u'(k) = 0, 
k = —n, —n- \ -1, • • -, — 1 , 0, 1, • • •, n—1, n. 

Since u(—n) = 0, 

X X 

a'(x)dx. 
-n 

Now ur(x) vanishes at the same points as the function 

P(x) = x(x2—l)(x*—22) • • • (x2—n2). 

Determine a function E(x) by the equation 

u\x) = P{x)B{x\ 

* J. F. Steffensen, CONFÉRENCES DU CINQUIÈME CONGRÈS DES 

MATHÉMATICIENS SCANDINAVES, p. 126. 
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R(x) being defined at an integer r by the equation 

*w = Sum-
Integrating this equation from —n to n, and recalling 

that u(—n) = u(n) = 0, we have 

u(n) — u(—n) = I P{x)R{x)dx = 0. 

On integrating the right band side of this equation by parts, 
and setting 

P(x)dx, 
-n 

it follows that 

B'{x)Q(x)dx = B'{x)Q{x)dx. 
-n U— n 

Now by the lemma, Q(x) is a function of one sign in the 
interval —n<Lx<,n, so that we may apply the first mean-
value theorem for integrals. We have thus 

B'(t) • Q(x)dx = 0, — ^ < C < n . 

Now 
pn 

Q(x)dx ^ 0, X n 

- 5 

since Q{x) does not change sign in the interval (—n, n) 
and is not identically zero. Hence it follows that 

(2) #(£) = 0. 

We may now make use of Eolle's theorem and of equation 
(2) to obtain the result desired through the following device. 
Form the function 

0(x) = P(x)[E(x)—E(0l 

On account of the relation (2), it is seen that the quantity 
in brackets vanishes at least twice in the point x = £. P(x) 
vanishes 2n-\-l times in the interval—n<x<n. Hence, 
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allowing* for multiple zeros, we see that <D(x) vanishes at 
least 2n + 3 times in that interval, whether or not £ is an 
integer (that is, a point at which P(x) vanishes). Now by 
successive applications of Rolle's theorem * we see that 
<l>i2n+2)(x) vanishes at least once in the interval (—-n, ri). 

Since the (2n + 2)th derivative of P{x) is identically zero, 
and since P(x)-R{x) is u'(x), it follows that 

<D<*H-2>(g) = tt(2iH-8)(g) = o, — n<$<n. 

The theorem is thus established. 

3. A Companion Theorem. The second theorem is similar 
in character to the first, but deals with an even number 
of points where the first theorem dealt with an odd number. 
The conclusion, however, is essentially different in that the 
order of the highest derivative whose vanishing can be 
inferred is one less than the number of conditions imposed 
on u(x\ while in Theorem I these numbers were equal, t 

THEOREM II. A function u(x) is continuous with its first 
2n derivatives in an interval (a, b), and its 2nth derivative 
itself possesses a derivative for every value of x between a 
and b. If the function vanishes at a and b, and if its first 
derivative vanishes at 2n points of the interval, equally spaced 
and including the end points a and b, then the (2n + l)tJi 
derivative of the function vanishes between a and b. 

No loss of generality will be incurred by taking the points 
as —2n + 1 , —2n + 3, • •., —3, — 1 , 1, 3, • • •, 2^—3, 2^—1. 
Then a = — 2 ^ + 1 , b = 2n—1. Since u(a) = u(b) = 0, 
we have 

b 

u'(x)dx = u(b) — u(a) = 0. 

* See, for example, de la Vallée Poussin, Cours (VAnalyse, vol. 1, 
p. 66 (5th edition). 

f From the point of view of the general theory of mean-values, as 
set forth by Birkhoff, this is an essential distinction, Theorem II coming* 
under the general case and Theorem I being an exceptional case. 

J a 
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Set 
P(x) = (x2—l) (x2—32) • • • (x2—2n—l2) 

and determine R(x) by the equation 

u'(x) = P(x)R{x). 
Then 

(3) I P(x)B(x)dx = 0. 

Now set 

q{x) = ——"w-j-T-, Q(x) = I q(x)dx. J ->x 

a 
x—2n + l' 

We can show that Q(x) is a function of one sign in the 
interval (a, 6). By the lemma, Q(sc) is a function of one sign 
in the interval (a, 2n— 3). (The lemma is geometrical, and 
is applicable after a change of unit or a shift of origin.) 
Q(x) vanishes at a and at 2n— 3* but is positive at inter­
mediate points, q(x) is positive in the interval (2n—3,&), 
and consequently Q(x) is never negative in the interval (a,'b). 

From equation (3) we have 

J->& nb 

P(x) E(x) dx = (x — 2n + 1) q(x) B(x) dx = 0. 
a tJ a, 

Integrating by parts, we obtain 
(x — 2n+\)R(x)Q{x)\l 

h d 
T 7 K* — 2» + 1) B(x)] Q(x)dx = 0. 

a, CtX 

The first term on the left hand side drops; so that we 
have on applying the first mean-value theorem for integrals 

-4-\(x — 2n+l)B(x)\ • \Q(x)dx = 0, a<£<6. 
dx L Ax^ÇJa 

nb 

Since I Q(x)dx + 0, it follows that 

(4) -£-\(x — 2n + l)R (a)! = 0. 
dx L J x=Ç 

* This follows because q(x — l) — q( — x—1). 
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We now employ a device similar to that used in the 
proof of Theorem I. Set 

0(x) = P(x)B(x) — B(Q(S—2n+l)q(x) 
= q(x)[E(x)(x — 2n+l)—i2(ö(£ — 2n + l)]. 

Now on account of the relation (4) it is seen that the 
quantity in brackets has at least two zeros in the point 
x = f ; and q(x) has (2n — 1) zeros. It follows then that 0>(x) 
has at least ( 2 n + l ) zeros in the closed interval (a9 b). 
By Rolle's theorem <t>(2n)(x) must vanish at least once in 
that interval. Since P(x)R{x) is u'(x), and since the 2ntla 
derivative of q(x) is identically zero, it follows that 

<D®*>(£) = uP"*HÇ) = O, a < ? < h 

The theorem is thus established. 

4. Applications to Mechanical Quadrature. Let us now 
apply these theorems to the problem of mechanical qua­
drature. Suppose a function f(x) is known at equally 
spaced points xt, x2, x3, • • • x2n-rh a n ( i suppose it be required 
to find an approximate expression for 

fix) dx. 
'i 

Let Fix) be the polynomial of degree 2n at most, taking on 
the known values of fix) at the given points. Then form 
the function 

J '~*x nx 

[fix) — Fix)]dx — A I Pix)ix—Xn+i)dx, 
xi OXx 

where 
P(x) = {X—X-dix — X*) • • • (x — X2n+l), 

and where A is to be so determined that ttO%n+i) = 0. 
This is possible since 

X2n+1 

Pix)ix—xn+i)dx ^ 0.* 
i 

* This may be seen by writing 

J^n+1Pix)ix-xn+i)dx = -J**n+1dxj*P(t)dt 

and then applying the Lemma. 

J x 

f 
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Now u(x) satisfies all the conditions of Theorem I (making 
proper assumptions regarding the continuity of ƒ (#), and 
consequently 

M<2»+8)(£) = , 0y Xi <g<a.2n+1. 

That is, 

ƒ (2̂ +2) (£) _ ^ (2 w + 2) ! = 0, A= f{2n+2) (?) / (2 w + 2) ! 

Since wfen+i) = 0, we have 

f(x)dx= I F(x)dx 
0?i ï J ^ i 

(5) 
ƒ (2w+2) (J) 
"(2w+2)~ 

a remainder formula for mechanical quadrature. 
In case the number of points is even, we use theorem II 

and obtain 

f{x) dx = I F(x) dx 
Xi nJX\ 

+ (» xT I (œ— ̂ i) • • • (x—x2n)dx. 

These formulas were given by Birkhoff in the paper 
already cited, but were established only for small values 
of n. Steffensen established formula (5) by other methods 
in the article above cited. 

5. Extensions. The methods here employed might be 
used to prove certain other mean-value theorems involving 
equally spaced points, and to which Kolle's theorem is 
not directly applicable. For example, I have proved the 
following theorem. 

THEOREM III. A function u{x) having the same amount 
of continuity as that of Theorem I vanishes at the points 
a and b. If (a, b) is divided into 2n-\-2 equal parts, and 
if u'{x) vanishes at the interior points of division, then 
u^n^%\x) vanishes at an interior point of (a, b). 
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