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NUCLEAR AND HYPER-NUCLEAR POINTS 
IN THE THEORY OF ABSTRACT SETS* 

BY E. W. CHITTENDEN 

1. Introduction. In his note, Le théorème de Borel dans 
la theorie des ensembles abstraits,^ Fréchet considers the 
problem: determine the most general class (L) for which 
the theorem of Borel holds true. This class is found to 
be a class (S), that is, a class (L) in which the derived 
set of every set is closed. At the end of the note he calls 
attention to the fact that the stronger theorem of Borel-
Lebesgue may not hold in a given class (S) and proposes 
the question: what is the most general class (L) for which 
we may state the theorem of Borel-Lebesgue? That such 
a class (L) be a class (S) is necessary but not sufficient. 

This attracted the attention of R. L.Moore,% who showed 
by the aid of the theory of transfinite ordinals that the 
most general class (L) which admits the theorem of Borel-
Lebesgue is a class (S) with the further property "every 
compact set is perfectly compact". The property perfectly 
compact, so named by Fréchet, § is defined as follows. 
A set E is perfectly compact if every monotone sequence 
of subsets of E determines an element which is common 
to all the sets of the sequence or to their derived sets. 
A sequence of sets is monotone if of any two sets of the 
sequence one contains the other. 

Later Fréchet, || developing the theory of classes (V) 

* Presented to the Society, December 1, 1923. 
t BULLETIN DE LA SOCIÉTÉ DE FRANCE, vol. 45 (1917), pp. 1-8. 

Called Fréchet, I hereafter. 
X On the most general class (L) of Fréchet in which the Heine-

Borel-Lebesgue theorem holds true, PROCEEDINGS OF THE NATIONAL 
ACADEMY OF SCIENCES, vol. 5 (1919), pp. 196-210. 

§ Sur les ensembles abstraits, ANNALES DE L'ECOLE NORMALE (3), 
vol. 38 (1921), p. 342. Called Fréchet, II hereafter. 

11 Sur la notion de voisinage dans les ensembles abstraits, BULLETIN 
DES SCIENCES MATHÉMATIQUES, (2), vol. 42 (1918), pp. 138-156. Called 
Fréchet, III hereafter. 
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more general than classes (L), resumed the study of the 
theorem of Borel. This theorem was found for classes (V) 
to be the equivalent of the property of Hedrick; that is, 
for every set E in the class (V), element p interior to E, 
and set F which has p for a limit element, there is 
a subset F± of F such that every element of Fx is interior 
to E.* This property implies the closure of derived classes. 
The theorem of R. L. Moore was extended by Fréchet to 
these more general classes (V) with the following results. 
The property of Borel-Lebesgue implies the property 
perfectly compact in the most general class (V). Under 
the hypothesis of the property of Hedrick, every set which 
is perfectly compact in itself possesses the property of 
Borel-Lebesgue. t 

Kuratowski and Sierpinski J presented another solution 
of the problem. An element or point p of a set E is of 
power 11 relative to E if there is a subset of E of power ^ 
interior to every neighborhood of p, but not every neigh­
borhood of p contains a subset of E of power greater 
than p. It is convenient to say that a point p of a set E 
of power {i is a hyper-nuclear point of E if p is of power p 
relative to E. A necessary and sufficient condition that 
the theorem of Borel-Lebesgue hold in a class (L) is that 
every infinite compact set whose derived set is also com­
pact determine at least one hyper-nuclear point. Since in 
a class (L) the properties perfectly compact, and derived 
sets are closed, together form a necessary and sufficient 
condition for the theorem of Borel-Lebesgue it follows 
that in a class (L) they are equivalent to the condition 
of Kuratowski and Sierpinski. Section 4 of the present 
paper contains a generalization of the theorem of Borel-
Lebesgue which holds in the most general class (V) and 
reduces to the theorem of Kuratowski and Sierpinski when 

* Fréchet, III, p. 155. 
t Fréchet, II, pp. 346-49, §§ 8-10. 
X Le théorème de Borel-Lebesgue dans la théorie des ensembles 

abstraits, FUNDAMENTA MATHEMATICAE, vol. 2 (1921), pp. 172-78. 
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the class (V) is equivalent to a class (L). This new 
theorem is shown by the example of § 5 to be independent 
of the closure of derived sets. 

Fréchet * has shown that in a class (D), that is a class 
admitting a generalization of distance, every compact set 
is perfectly compact, and proposes the problem: determine 
the most general class (V) with this property. Section 4 
below presents in terms of the concept nuclear pointt a 
necessary and sufficient condition that every compact subset 
of a class (V) be perfectly compact, 

2. On Terminology. As a basis for the following discussion 
we postulate a space P of points p and a system of families 
of subsets V of P called neighborhoods. To each point p 
is assigned in a definite way a family of neighborhoods Vp. 
There is no loss of generality in assuming that Vp contains #, 
and for convenience we shall make that assumption. A 
point p is a limit point of a set E if every neighborhood 
of p contains a point of E distinct from p. The relation 
limit point so defined has the following properties. 

1) Every limit point of a set E is a limit point of every 
set containing E. 

2) Whether p is a limit point of a set E or not depends 
only on the elements of E other than p %. 

A pointp is interior to a set G Up is an element of G 
and if G contains a point of every set which has p for a 
limit point. Then p is interior to every neighborhood Vp. 
Furthermore if p is interior to G then some neighborhood 
of p, VPJ is a subset of G. 

A series S of sets G is called monotone if of any two 
sets G, Gr of the series one is a subset of the other. A 
monotone series will be called closed if the sets G or their 
derived sets have a common element; otherwise open. If 

* Fréchet, II, p. 346. 
f A point p is a nuclear point of a set E of power /* if every 

neighborhood of p contains a subset of E of power fx. 
% Fréchet, III, p. 140. 
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each such common element belongs to a set E the series 
will be said to be closed in E. 

A set E is perfectly compact if every monotone series 8 
of subsets G of Eis closed; perfectly self-compact, if every 
such series S is closed in E. Fréchet has shown that 
every perfectly self-compact set is compact and that every 
perfectly self-compact set is self-compact*. 

3. Procedure under the Zermelo Axiom. The following 
procedure based upon the assumption of the Zermelo axiom 
and the well known properties of the transflnite ordinal 
numbers was employed by Kuratowski and Sierpinskit and 
is the basis for several of the following proofs. Let Q be 
an aggregate of power ^ and of elements q. Of the trans-
finite ordinals 42 for which the aggregate of all ordinals 
a < 42 has the power ^ there is a least, 420. Let 

(1) «1> #2, Ï8, • • • , QW • • • , la» • • • > 2«> • • • (" < £o) 

represent a 1 — 1 correspondence between the aggregate Q 
and the aggregate of all ordinal numbers a < 420. If a 
sequence of ordinals ft < 420 is determined so that for every a 
there is a ft >̂ a then the /2's form a series of the ordinal 
type 420 and the aggregate of all such ordinals ft is of 
power ^. Several of the proofs in the sequel depend upon 
a correspondence of the type (1) and the further fact that 
the elements qp form an aggregate of power ^. 

4. Nuclear Points. A point p will be said to be a nuclear 
point of a set E in case every neighborhood Vp contains 
a subset H of E equivalent to E\ that is, of the same power 
or cardinal number as E. 

THEOREM 1. If an infinite set E is perfectly compact E 
determines at least one nuclear point. 

Let E be an infinite set of points p and denote the cardinal 

* Fréchet, II, p. 343. A set E is compact if every infinite subset 
of E has a limit point; self-compact if it has a limit point in E. 

t Loc. cit., p. 175. 
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number of E by ^. Then as in § 3, we have an ordinal S20 

and a 1 — 1 correspondence 

(2) Pl,P2,Ps, -"jPn, .-.,Pw, ---,Pa, . • . 0 - < A > ) 

between the ordinal numbers « and elements p of E. Let 

( ? « = 2 pp. 
p>a 

Then ^ = E. The (r« form a monotonie sequence of subsets 
of E with no common element. But E is perfectly compact, 
so there must exist an element q common to all the Ga. 

Let F be a neighborhood of the point q. If q is not in E 
then it is a limit point of every Ga and therefore V contains 
a point qa of Ga distinct from q. If q is in E there is an a 
such that Ga does not contain q. For every cc'^>a the point q 
is a limit point of Ga'. Again q is a limit point of every Ga, 
and consequently V contains a point qa of Ga. Let Q be the 
set of all distinct qa, and for a given element qa of Q let /£ 
denote the index such that qa is in 6fy but not in 6fy+1. The 
index fi is in fact that index a which corresponds to qa regarded 
as an element of E and determined by the correspondence (2). 
These indices fi are such that for every a < 420 there is a 
fi>a. It follows at once that the /J's and therefore the points 
of Q form an aggregate of power ^ Therefore q is a nuclear 
point of E. 

COROLLARY. Every set E which is perfectly self-compact 
contains a nuclear point. 

For the point q of the preceding proof may be assumed 
to be a point of the set E. 

THEOREM 2. If every infinite subset of a set E of points 
of the space P determines a nuclear point then E is perfectly 
compact. 

Let S be an open monotonie sequence of subsets G of a 
set E, satisfying the hypothesis of Theorem 2. Let H be a 
set of points p such that every G contains a point of H. 

33* 
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Let H be of power ^ and let i20 be the least ordinal of 
that power. We may assume a 1 — 1 correspondence of the 
type (2) between the elements of H and the ordinals a <c J20. 
For each element pa we may select a set Ga which does not 
contain pa and such that Ga+i is contained in Ga. Since 
every set G of the series S contains some element of H it 
follows that every G contains some (?«. Now by hypothesis 
H has a nuclear point q. Let F be a neighborhood of q 
and let Q denote the subset of H of power ^ in V. Then 
if jS is any ordinal, fi < J20, there is an element pa of H in Q 
for which /?<:«. Otherwise, because of the hypothesis on 
A>? Q would be of power less than ^. It follows at once 
that V contains an element of every Qa and therefore of 
every G. Consequently q is common to all the G', contrary 
to the hypothesis that S is an open sequence. 

Theorems 1 and 2 imply the following theorem. 

THEOREM 3. A necessary and sufficient condition that a 
set E be perfectly compact is that every infinite subset of E 
determine at least one nuclear point 

COROLLARY. A necessary and sufficient condition that a 
class (V) be a class (M); that is, that every compact set E 
be perfectly compact, is that every infinite compact set E possess 
at least one nuclear point. 

For if a compact set is finite it is perfectly compact. If 
it is infinite the result follows from Theorem 3. 

5. Hyper-Nuclear Points. The concept hyper-nuclear point 
is helpful in generalizing the theorem of Kuratowski-
Sierpinski. A point p is a hyper-nuclear point of a set 
E of power fi in case there is a subset H of E of power 
I* interior to every neighborhood of p. 

The theorem to be generalized may be stated as follows. 
A necessary and sufficient condition that the theorem of 
Borel-Lebesgue apply to a class (L) is that every infinite 
compact set E whose derived set E' is also compact possess 
at least one hyper-nuclear point. 



1924.] NUCLEAR POINT SETS 517 

The extension of this result to classes (V) in general is 
a consequence of the two following theorems. 

THEOREM 4. If a self-compact set H contains a hyper-
nuclear point of every infinite subset of H, then H admits 
the property of Borel-Lébesgue* 

Let us suppose that H does not admit the property of 
Borel-Lebesgue. Then there is a family F of sets I which 
covers H and contains no finite subfamily with the same 
property. Among such families F there is (according to 
the theorem of Zermelo) at least one, say F0j whose power [i> 
is a minimum. Let i20 be the first transfinite ordinal of 
power ,a. There is a well ordered set 

(3) i i , Z2? I*> • • • ? Inj • • • ? Iw, • • • ? laj • • • (« -< A)) 

of order type £0 comprising the totality of the sets I of F0 

and in one-one correspondence with the numbers a < J20. 
From the definition of F0, every point of ü i s interior to at 

least one of the sets Ia but no segment of the sequence (3) 
has this property. We can also suppose that every set la 
contains in its interior an element of H, denoted by pa> 
which is not interior to any set Iç f or ? <c a, since all the 
sets Ia which do not have this property could be suppressed 
in the sequence (3) without reducing the ordinal type (because 
there is no family covering H of power less than p, and 
the reduced family would not fail to cover H). 

The set Q of all the points pa is evidently of the power ^ 
(since pa 41 Pp for a < fi\ pa being interior to Ia while pp 
is not). But Q is a subset of H and so by hypothesis È 
contains a hyper-nuclear point q of Q. This point q is 
interior to some one of the sets Ia of the sequence (3), let 
it be Ir Since q is a hyper-nuclear point of Q there is 
a subset of Q of power ^ interior to every neighborhood 
of q. But q is interior to Iy which must contain a neigh­
borhood V of q. It follows at once that there is a subset of 

* The proofs of Theorems 4 and 5 differ from the corresponding 
proofs of Kuratowski and Sierpinski (loc. cit., pp. 174-75) only with 
respect to those details which are involved in the generalization. 
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Q of power \i interior to Iy. But the totality of the points 
Pçfor §<y is of cardinal number less than ^. Therefore Iy 

contains in its interior an element pu of Q whose index v 
exceeds y. But by definition pv is not interior to any set 
I* (? < ?)- This is a contradiction, and the assumption that 
H does not possess the property of Borel-Lebesgue fails. 

THEOREM 5. If an aggregate H admits the property of 
Borel-Lebesgue, H is self-compact and contains a hyper-
nuclear point of every infinite subset of H. 

That the aggregate H of the theorem is self-compact is 
well known.* Let Q be an infinite subset of H of power ^ 
and suppose that to each pointy of H there is a neighbor­
hood Vp such that the subset of Q in Vp is of power less 
than ^. The totality of such neighborhoods Vp covers H, and, 
by the Borel-Lebesgue property, it can be replaced by a finite 
family with the same property. Then Q can be represented 
as the sum of a finite number of sets each of power less 
than p, contrary to the hypothesis that Q is of power ^. 

From Theorems 4 and 5 we have the following theorem. 
THEOREM 6. A necessary and sufficient condition that an 

aggregate H possess the property of Borel-Lebesgue is that 
H be self-compact and that every infinite subset of H be 
hyper-nuclear in H. 

It should be noted that the hypothesis "derived sets are 
closed" does not enter this theorem directly. That for 
classes (V) in general the theorem above is independent 
of the closure of derived classes is shown by the example 
of the following section. 

In a class (L) every self-compact class is compact and 
closed. From the theorem of Kuratowski and Sierpinski 
and Theorem 6 above we have the following theorem. 

THEOREM 7. In a class (L) a necessary and sufficient 
condition that every infinite compact set E whose derived 
set is compact determine a hyper-nuclear point is that every 
closed compact set H have the property uevery infinite subset 
of H has a hyper-nuclear point in H". 

* Fréchet, HI, p. 152, § 19. 
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Since Fréchet has shown that every set with the pro­
perty of Borel-Lebesgue is perfectly self-compact it follows 
from Theorem 6 that we have the following.theorem. 

THEOREM 8. If a set H is self compact and contains a 
hyper-nuclear point of every infinite subset of H, then H is 
'perfectly self compact. 

This theorem should be compared with Theorem 2. It 
would be interesting to have an example showing that the 
conclusion does not hold if the word "hyper-nuclear" in 
Theorem 8 is replaced by the word "nuclear". 

6. An Example. It has been shown that in a class (L) 
the theorem of Borel implies the closure of derived classes 
but that in the more general classes (V) the theorem of Borel 
and that of Borel-Lebesgue may be formulated without the 
use of the hypothesis of the closure of derived sets. The 
following example completes the proof of this independence. 

Let P be the class of all number pairs p = (n, m) where 
n = 1, 2, 3, • • •; m = 1, 2, 3, together with the number 
pair (0,0). The neighborhoods V are defined as follows. 
The elements p = (n, 1), n = 1, 2, 3, • • -, have but one 
neighborhood consisting in each case of the element p 
alone. Each element of the form p = {n, 2) has a family 
of neighborhoods Vkp, consisting for given k of the point p 
and all points q = (n, 1) for which n ;> k (k = 1, 2, 3, • • •)• 
The elements p = (n, 3) have a family of neighborhoods 
Vjcpf each comprising the pointy and all points (n, 1) and 
(w, 2) for which n^>k (k = 1, 2, 3, • • •)• The neighborhoods 
Vkp of the point p = (0,0) contain all the points (w, 2) 
and (w, 3) for n = k (it = 1, 2, 3, • • •)? in addition to the 
point p •=• (0, 0) itself. It is easy to see that P is com­
pact, and that every infinite subset of P determines a 
hyper-nuclear point. It may be verified directly that al­
though derived sets are not closed, the theorem of Borel 
holds. The theorem of Borel-Lebesgue is satisfied vacuously, 
since the class P is enumerable. 

T H E U N I V E E S I T Y OF I O W A 


