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THE INVAKIANTS OF FORMS 
UNDER THE BINARY LINEAR HOMOGENEOUS 

GROUP ff6 MODULO 2* 
BY 0. E. GLENN 

1. Introduction. The transformation of an arbitrary bi­
nary quantic whose coefficients are written without binomial 
multipliers, 

m 

(1) ƒ = (a 0 , . . . , aj (xv x2r = I I Of *i - *?«*>> 
i = 0 

by the formulas 
T: x1 = Ai# i+^i#2 , X2 = ^ix'i + ^2#2, 

in which l^ ^j are such residues of a prime p that T ranges 
over the total group O of order (p2—p) (p2—1), leads to 
the formal modular concomitant system of/. For various 
reasons jp = 2 gives rise to exceptions in this theory; thus 
quadratic congruence theory becomes very special when 
p = 2, and also certain types of modular concomitants existt 
for the even modulus that do not exist for p > 2.J 

2. Analogies. It is a known result of algebraic (non-
modular) invariant theory that every concomitant of (1) is a 
polynomial in determinants of two types, viz. (r(i)r(k)), (r^x), 
i. e.? linear forms themselves and resultants of pairs of them. 
Also the complete system of covariants of any number of 
quadratic quantics, 

(2) ft = (ao, • • •, a2) (a?i, x2)
2, . . . , fr= (k,..., h) (#i, #2)

2, 
is a set of concomitants that can be formed as transvectants 
of forms fi taken in pairs.§ The dyadic combinations there­
fore furnish the complete seminvariant systems, also, but for 
the invariants it is found that the éliminants of the triadic 
combinations of the forms fu . . ,,fr are to be added. 

* Presented to the Society, December 28, 1923. 
f TRANSACTIONS OF THIS SOCIETY, vol. 19 (1918), p. 110. 

Î Dickson, The Madison Colloquium Lectures, Lecture III, p. 33-64. 
§ Grace and Young, Algebra of Invariants, 1903, p. 161. 

9* 
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The facts are more complicated when the transformations 
form the group GQ (mod 2). Then a simultaneous system of 
covariants of only two linear quantics 
(3) ƒ = a0oci + aix2, g = b0xx + hx2, 
is composed of sixteen concomitants. These are tabulated 
below. The methods for their derivation are exemplified 
later in this paper in the corresponding problem for two 
quadratics although the two problems are not without differ­
ences in respect to detail. We shall use the abbreviations 

and, if two linear covariants are 
C = c0#i+ ci%2, D = do%i-\r d\X2j 

[CD] is the covariant 

(5) [CD] = (c0d0+ c0di+ c1d0)x1 + (ddi + c0di-{- cid0)x2. 

The covariant B in the list is led by the invariant (ab), viz. : 
(6) B = {a0\ + aJ)Q) x\ + (a0\ + a0b0 + afij x\x2 

+ (aA + aobo + aA) xixl + (%K + Ü^Q) x\. 
Covariants ofhvo linear forms under 0$: 

Invariants : (ab), I = a% + a0a± + a\, J = V^ + b0bl + b2
v 

Lx = ajax + aQd2
v L2 = b\b1 -f b0b\. 

Linear Covariants: f, g, Exfj E2g, [fg], [gE^f], 

[fE20], [EJE.g). 

Quadratic covariants : wf, wg, Q = x\ + xtx2 -f- x\. 

Cubic covariants: B, L = x\x2-\- xxx\. 
Thus the independent covariants of a set of linear quantics, 
under G6, form an extensive set which increases rapidly as 
the number of quantics is increased. If we add a third form 
h = CQXI-\- C1X2 to the set ƒ, g we shall have to consider con­
comitants formed from ground-forms in triadic combinations, 
as is proved by the existence of the following irreducible 
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seminvariant: 
(7) C = a0b0ci + a0bid + aib0ci + aihc0> 

Similar considerations hold, under more complicated cir­
cumstances, for the simultaneous systems, for G6, of a set 
of quadratic quantics. The rest of this paper concerns the 
system of two quadratics. 

3. Seminvariants. Let r be the linear transformations 
upon a0, au a2 which are induced by transforming ƒ by 

T: x = x[-\-x2, x2 = x2, 
and suppose r' to be that which corresponds by trans­
formation of g by T, where 

ƒ = a0xl + a^cxx2 + a2x\, g = bQx\ -f bxx±x2 + b2x\. 
Then, 
,Qv ƒ r : ao :::==

 CIQ, cti = cti, ci2 = cto -f* cti -\- a2, 
W } r : 60=&0, W=6l, &2=&0+&l+&2. 
With suitable restrictions we connect the problem of the 
seminvariants of ƒ and g with a simpler problem, previously 
solved, by taking a0 = 0, temporarily. We then have two 
simultaneous groups (mod 2), viz., 
/qx ƒ -J~i • $1 = <̂ i? flte = fli -f- ^2? 

concerning which it is known that a fundamental system of 
universal concomitants consists of six quantics, as follows:* 
(10) av bQ, bv xp1 = al + a1a2, s = (b0 + bl + b2)b2, 

Q1 = aA+a2(bo + hi)> 
We desire six seminvariants of the set ƒ, g such that the 
forms (10) are respectively residual to the six when cto = 0 
(mod 2). 

The seminvariant of ƒ of the type of s is aoa2 + V i = <*-
The leading coefficient of [/#]i is ao&o+ (ƒ#), where (ƒ#) 
is the invariant 

(fff) = (ao + «0 (&i + &2) + (6o + 6i) (ai + a2) + ai&i. 
The form (>! is the residue (modao) of (fg) + (&o + &i) fli = #• 

* TRANSACTIONS OF THIS SOCIETY, vol. 21 (1920), p. 293. 

t The symbolism (fg), [fg], {fg}, {fg}, explained in (19) in the 
present article, was first defined in PROCEEDINGS OF THE NATIONAL 
ACADEMY, vol. 5 (1919), p. 107. 
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Assume, in arbitrary form, a seminvariant 8 of the set/, g, 
(11) 8 = 8(ao, al9 a2, h, h, h) ; 
then, by (10), 
(12) 8± = 8(0, aly a2, bo, bl9 62) 

= F(at, h, h, rpx, s, Qt) (mod 2), 
where F is a polynomial in its arguments with integral 
coefficients. Hence we can arrange 8 as an expression 
of the form 
(13) 8 = F(a±, h, &!, cr, s, x) 

+ aoFt(a0, au a2, b0, &i, &«) (mod 2), 
and Fx is evidently a seminvariant of the set f g. This 
process of reduction can be applied successively until we 
reach a coefficient quantic Fr which is free from ao (explicitly), 
it being, therefore, a polynomial in 

au h, h, cr, s, x, 
i. e., 
(14) 8 = F+ a0Fx + a\F2 + . . . + < F r (mod 2). 

THEOREM. A fundamental system of seminvariants of the 
s#tf> 9 (mod 2) consists of the seven forms 
(15) ao, bo, a±, h, a, s, (fg). 

4. Syzygies. The expressions k = ao<r, % = bos, a\, b\, 
q = a + a\ + a0a1? g2 = 5 + b\ + Mi> Cfr) a r e P u r e i n v a -
riants. The following syzygies can be verified: 

( al + ala± + a0q± + k = 0, 

h fid &o + &o&i + &o22 + * = °> 

I + K&o + #A) KA + aA) = °> 
where (> = (fg) + ai&i. 

These syzygies may be employed as literal moduli of re­
duction for the purpose of reducing the arbitrary seminvariant 
8(ao, &i> «2, h, h, 62) to a polynomial of finite order in ao, b0. 
We have immediately the following theorem. 

THEOREM. The arbitrary seminvariant 8 of two quadratic 
forms f g can be represented in the finite form 
(17) S = O>0 + ®x\+ 02bl + a0 (Vo+M> + « 

+ aJ(Xo+Zi6o+Xa6o)> 
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in which G>i, ipi, Xi aw polynomials in the invariants 
(18) qh q2, k, %, ah bh {fg), 

and the highest power of {fg) which occurs is the first. 

5. A Method in Covariants. It is known that a complete 
concomitant scale,* for the modulus 2, of a covariant, 

O ^ O ^ l I ° 1 1 X 2 -f- • • • -J- lyM&2 ? 

of a quantic fm of order m, for the reduction of all concomi­
tants of degree unity in the coefficients of C and of order > 3, 
is composed of 

(C,(tf) = tf1+tfa + - . . + £*_!, 
[C] = (C0 + (OK+((C7) + CM)x2, 

(19) ] {(7} = C0x\ + ((7).^.x2 + tf^sg, 

The latter covariant is existent only when I f is an odd 
number. This scale produces concomitants of fm from any 
covariant of the latter by the principle of copied forms. 

Another method, not previously described, for the con­
struction of covariants of fm, to any prime modulus p, is to 
make an appropriate selection of a primary quantic, 

(20) P0 = q0x« + qrf-^2 + . • • + qaa%, 
of given degree-order (i, a) and apply to it, simultaneously, 
the substitutions of the group upon the variables generated 
by x\ = x[ + #2, #2 = x'z, and the corresponding substitu­
tions of the induced group upon the coefficients. We thus 
obtain p quantics 

(21) P0, P1 = tt,...,qÜ(xvxJ", . . . , 
P p - 1 = (a?-1 ) , . . . ,2g ,-1 ))(»1 ,« a) a , 

and, if we assume that the primary quantic has been properly 
selected, any symmetric function of P0 , P i , . . . , Pp-i is a 
covariant, modulo p, of fm. Not many rules, other than em-

* TBANSACTIONS OF THIS SOCIETY, vol.19 (1918), p. 110; vol.20 
(1919), p. 155. 
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pirical ones, for the determination of primary quanti es, are 
known to the writer, but examples of the method are shown 
in the next paragraph. Obviously Po should be such that 
the assumed symmetric function is invariantive under the 
other two generators of the total group (mod p), i. e., 
#1 = %[, X2 = A#2 5 X\ = X2, %2 = #1. 

6. Fundamental Covariants. We are evidently able to 
reduce all covariants in terms of those of orders 0, 1, 2, 3 
led by seminvariants aj&j{, (i,j = 0, 1, 2) and by the in­
variants of which <D0 in (17) is a function. A formula 
showing this reduction in general form will be derived. 

We find the following covariants with the leading coef­
ficients which are adjoined. Abbreviations employed are 

Linear forms: 
«o + «i,[ƒ]; ?>o + bu[g]; a0b0 + (fg), [fg]; 
a'i + a\, [EJ] ; 6§ + b\, [E0g] ; « ^ + (fE%q), [fE2g\ ; 
afa + igE^lgEJ]; affi +(EJEj), \EJE$\ 

Quadratic forms'. 

«0&0> {ffElf} î ^0> {/%} 5 alK {ElfE29Y 
There are no linear covariants, in the domain, led by in­
variants, and the only quadratic covariants whose leading 
coefficients are invariants are comprised in the formula JQ, 
where I is an arbitrary invariant. The only invariantive 
leader of covariants of the third order which we shall be 
required to consider is CT>0 (cf. (17)). Let £ be the operation 
of applying to a primary quantic P0 the substitutions 
(22) x± = x[ + x'2, x2 = x2, 

a'o = a0,
 a'i — ab 2̂ = 0̂ + $1 + $2« 

If the primary is 
(23) P0 = (oo + <h)Xi + («o + ct1)x2, 
then 

Px = £P0 = ((h + <h) xi + (UQ + ci2)x2, 
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so that 
[ £Po = (ao+<h)xi + («i + a2)x2 = [ƒ], 

(24) j fa = 2^P0Pi = [(oo + «2)^1 + («0 + 01)̂ 2] 
{ X [(«i + a2)xx + («o + ^2)^2]. 

If the primary quantic is 
Po = (60 + b2)x, + (&o + 61)^2, 

we obtain, similarly, 

( 2PO = (60 + &i)*i + (&i + 62)̂ 2 = [#], 
(25) 4, = ZPoPi = [(h + h)x, + (fc0 + &0<%] 

I X\(b1-{-b2)xi + (b0 + b2)x2l 
The respective seminvariant leading coefficients of the co-
variants [/Mi, [g]A2 are the invariants 

(26) (hQi + k, 6122 + ^. 
and these may replace Zc, *, respectively, in the system (18). 
Instead of (fg) in the fundamental system (15), we may 
employ {fg)i=(fg)-\-a1bu which is the resultant of [ƒ] 
and [g], A cubic covariant led by (fg)± is 
(27) B = [fg\Q + [f}g + (h\g]Q. 

There exist no cubic covariants led by any of the in­
variants k, *, ql9 q2, due to the fact that all of these in­
variants contain a term which is left unaltered by the 
permutational substitution* (a0a2) (ax) (b0b2) (h) = 8U 

The cubic covariants which we require, with their leading 
coefficients, are listed below. 

Cubic forms: 

%+av \f\Q; al + av \-Eif 1 Q\ h+K MQ; 

a0bl+E2(fg),\fE2g]Q- a^+E^ifgUE./E^Q', (fg)vB. 

THEOREM. An invariant leading coefficient #>0 of a cubic 
covariant off, g is necessarily congruent modulo 2 to the 
expression 
(28) C = (aiqi +k) xp'i + (b±q2 + *) t# + ( / ^ t / i 
wAere tte quantics ipi are invariants. 

* TRANSACTIONS OP THIS SOCIETY, vol. 19 (1918), p. 111. 
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To prove this we note that the invariant G>o (cf. (17)) is 
always of the form 
(29) F(qhq2,ahh) + C = <P0? 

where F is an integral form in its arguments. We have con­
structed covariants whose leaders are the invariants of the set 

aiqi + k, &102+*, (fg)i. 
If G is a covariant whose leader is <2>0? we have that 
(30) G + y>'i[f\Ai + y>'2[g]A2 + y*B 

is a cubic covariant led by F, and this is an absurdity be­
cause every possible form F evidently contains* a term 
which is left unaltered by Si. Hence F = 0 (mod 2), ®ç> = C 
(mod 2), which was to be proved. 

7. Reductions of the Arbitrary Linear, Quadratic, and 
Cubic Covariants. Let ^ represent a covariant of order 
unity whose seminvariant leading coefficient is S (cf. 17)). 
We have, identically, S = I-\- J, where 

I = (&o + K) 0i + (&o + &Î) ®2 + K + *i) % 
+ M o + (fg)] % + Kb* + (fE2g)] % + (aj + a?) x0 

+ [alb0 + (gEJ)]Xl + [albl + (E/E2g)]X^ 
J=*0 + \®i + &î®2 + ^ + ( # ) Vi + C/Z^) ^2 

+ a£ *0 + ( ^ / ) zx + (EJE.g) xr 

The following covariant is led by I: 
Ki = ^i[g] + ^2\E2g] + iPo[f] + ipi[fg] + rp2[fE2g] 

+ Xo[EJ] + xi[gE1f] + X2[E1fE2G}. 

Therefore, there would exist a linear covariant led by the 
invariant J, viz., ^ + ^i? unless J= 0 (mod 2). Thus every 
linear covariant ^i is reduced by the formula (32), Q ^ = ü ) . 

Let ^ 2 represent an arbitrary quadratic covariant which 
is led by S. The following covariant has S for seminvariant 
leader: 

K2 = 0oQ + Oig + 02E2g + ipof+rpi{fg} 
+ yj2 {fE2g} + xoE1f+ xi {gErf} + X2 {E1/E2g}. 

Then K2 differs from ^ 2 by some covariant which contains x2 

(31) 

(32) { 

(33) { 

The number (ÎT) is even for all integers m. 
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as a factor; but, as no quadratic covariant can be factored 
thus, we have ^ 2 = K2 (mod 2), i. e., the arbitrary quad­
ratic covariant is reduced. 

Let ^ 8 represent an arbitrary covariant of order 3 with 
seminvariant leader 8. The following is a cubic covariant 
whose leading coefficient is J (cf. (31)): K& = KiQ. Note 
therefore that ]?s + K% = rs is a covariant whose leader 
is J. Hence, by (28) (Theorem), 

J—C+ {JE2g\ ip2 + < W ) i * i + (E1fE2g)iX2) 

that is, 
(34) r 3 = ipHflAi + ipttgUi + yiB 

+ (ip2E2 + XiEi + X2EMB, 

where {fE^ = E2(fg\ = (fE2g) + «i&ï, (cf. (27)). Note 
that operations by Eu E2 upon B produce only polynomials 
in covariants already listed. We have now reduced ]£s to 
the form 
(35) 2s=^Ks + r3 + 0L (mod 2), 
since L is the only cubic covariant which contains x2 as a 
factor. The quantic 0 is a pure invariant, but it is not known 
whether it is reducible, in all cases, entirely in terms of the 
invariants of the set (18). The following theorem has now 
been established. 

THEOREM. A fundamental system of formal covariants of 
the set consisting of the two binary quadratics 

(36) ƒ = (ao, au a2) (ocux2)
2, g = (60, h, b2) (xu x2)

2, 

under the total group 0%f modulo 2, is composed of 21 quantics, 
namelyy seven invariants, qlf q2, k, x, a±, bl9 (ƒ#), eight linear 
covariants, [ƒ], [g], [fg\ [Erf], \E2g\ \fE2g\ \gExf\ [E,fE2g\ 
five quadratic covariants, Q, ƒ, g, Ai, A%, and one cubic 
covariant, L. 

The remaining forms are reducible, as follows: 

Eif= iff + <Q, E2g = [gf + b{Q, 
\fg) - \f\\.9\+w+KT+ «AG, WJ) = ^i iM, 

{fE2g} = E2{fg}, {EJE.g} = EtE2{fg}. 

T H E U N I V E R S I T Y OF P E N N S Y L V A N I A 


