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ON THE LOCATION OF THE ROOTS 
OF POLYNOMIALS* 

BY J. L. WALSH 

It is the object of this note to prove a number of re
sults (particularly Theorems I, II, V, VI, below) concerning 
the roots of polynomials, generalizations of former results 
established by the writer. Our main new result is the 
following theorem. 

THEOREM I. Let {the interiors and boundaries of) the 
circles Ct, C2,..., Ck ivhose centers are the points ax, a2,..., cck 

be the respective loci of n±, n2, . . . , nk roots of a variable 
polynomial f(z) which has no other roots, where the circles 
Ci are all equal and their centers ai all lie on a line parallel 
to the axis of reals. If the polynomial 
(1) a0z

n + na1z
n-1 + n(n — l)a2z

n~2 

+ . • • +n(n—1)... .2-1 anj 
(n = n± + n2 H \- nu), 

has only real roots, and if the circles Ci are sufficiently 
small, then the locus of the roots of the polynomial 

F(z) = a0Az)+a1f(z)+a2f(z)+>--\-anf™(z) 
consists of the circles Cj ivhich are equal to the circles Ci 
and whose centers are the roots of F{z) ivhen the roots of f(z) 
are the points ccly cc2, . . . , ak of multiplicities n1} n$,..., nu 
respectively.f Any circle Cj ivhich has no point in common 
with any of the other circles Cm contains a number of roots 
of F(z) equal to the multiplicity of its center as a root oj 
F(z) when the roots of f(z) are the points ccit 

We shall later make clear the exact meaning of the 
words, "if the circles d are sufficiently small". Theorem 
I is to be proved by iteration of the following theorem. 

* Presented to the Society, December 27, 1922. 
+ When the roots of ƒ (z) are the points «i, a2, • • •, «*, the roots of 

F(z) are all collinear with the roots of f(z). This is a well known 
theorem due to Hermite, which can easily he established by proving 
the result in succession for the polynomials FX{Z)) F^iz),..., Fn(z) 
used below. 

4* 
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THEOREM II. Let the circles Ct, C 2 ? . . . Cu whose centers 
are the points ax, a2,..., ctk be the loci respectively of nt, 
n%,..., nu roots of a variable polynomial f{z) which has 
no other roots, where the circles C% are all equal and their 
centers cti all lie on a line parallel to the axis of reals. 
If Ci is real, then the locus of the roots of the polynomial 

(2) J'i (*)=ƒ(*) + * ƒ ( * ) 
consists of the circles C) which are equal to the circles Ci 
and whose centers are the roots of Ft (#) when the roots of 
f(z) are the points cct, cc2,..., ecu of multiplicities n^, n2, ...,nic 
respectively. Any circle C] ivhich has no point in common 
with any other of the circles C'm contains a number of the 
roots of Fx {£) equal to the multiplicity of its center as a 
root of Fx(z) when the roots of f{z) are the points a^ 

Theorem I has already been established for the case 

a0 = at == • • • = ae-i= ae+i — ae+2=- • • = an=0, ae + 0,* 

Theorem I has also been proved with no restriction on (1) 
nor on the size of the circles d for the case h = l.t The 
limiting case for cL = 00 of Theorem II is also true, and 
is proved as a limiting case of I, Theorem VIII. For the 
case that the circles Ci of Theorem II are sufficiently small, 
Theorem II is contained in Theorem I. 

The limiting case for ct = 00 of Theorem II gives 

* TRANSACTIONS OF THIS SOCIETY, vol. 24 (1922), pp. 31-69, 
Theorem X, p. 53. We shall refer to this paper as I. 

f TRANSACTIONS OF THIS SOCIETY, vol. 24 (1922), pp. 163-180, 
Theorem VI. We shall refer to this paper as II. 

The note in the COMPTES RENDUS of which II is the develop
ment was puhlished and II itself was written before the publication 
of a paper by S. Kakeya, PROCEEDINGS OF THE PHYSICO - MATHE
MATICAL SOCIETY OF JAPAN, (3), vol. 3 (1921), pp. 94-100. Kakeya treats 
the main theorem of II, and hy essentially the methods of II, although 
he makes the restriction that the circular region G involved shall be 
bounded by a circle whose center is the origin. See also T. Takagi, 
PROCEEDINGS OF THE PHYSICO-MATHEMATICAL SOCIETY OF JAPAN, (3), 

vol. 3 (1921), pp. 175-179, who gives a proof of Theorem V of the 
present paper. 
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a theorem which is essentially a well known theorem due 
to Lucas: 

If a circle contains all the roots of a polynomial, that 
circle contains all the roots of its derivative. 

Theorem I contains the more general theorem of Lucas 
which deals with any derivative of the original polynomial, 
for it turns out that in this case the circles d are " suf
ficiently small" in the sense which we shall give to those 
words. 

Let us proceed to the proof of Theorem II. In the case 
Ci = 0, the hypothesis and conclusion are the same; we 
turn to the case c± ^ 0. The roots of F1 (z) are the roots of 

( 3 ) 1 = /'<?) = * | ! i . . . • 1 
Cl f(z) Z—#1 Z— ^2 Z— Zn 

where zl9 z2, - - - ,zn are the roots of ƒ (z). It follows from 
the form of (3) that we can interpret the conjugate imaginary 
complex quantity of the right-hand member of (3) as the 
force due to particles situated at the respective points 
£1, £2? • • • ? zn, each of which repels with a force equal to 
the reciprocal of the distance. The roots of (3) are the 
positions of equilibrium in the field of force due to these 
particles and an additional constant force of magnitude 
IIOi at every point of the plane. It is to be noted that 
a multiple root of f{z) is always a root of F±(z) although 
not a root of (3). 

The proof of Theorem II can be given so as to be 
almost identical with the proof of the limiting case for 
Cl = 00 of Theorem IL* That is, we consider one particular 
root z of F1(z), and for that point z we replace the n 
repelling particles of (3) by n equivalent particles which 
coincide at a point £. When the n particles have the circles 
Ci as their respective loci, the w-fold particle £ has a 

* This remark applies not to the proof of I, Theorem X for k = 1 
as actually given in I, but to the proof there given in detail for I, 
Theorem VI. That proof can of course be given so as to apply directly 
to I, Theorem X, for it = 1. 
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circular region as its locus. Study of the locus of £ will give 
us the theorem. Let us proceed to the general outline of 
the proof. We shall omit details if they are similar to the 
details given in I. 

Theorem II is surely true when there is only one circle d. 
In this case, if a point z is on the boundary of the locus 
of the roots of Fx (z) and is not on or within the circle Ci 
which contains more than one particle, then it is necessary 
that 

Zx = Z2 = • • • = Zn, 

and these points lie on Ci.* Thus the line zz\ is parallel 
to the axis of reals. 

If the locus of all the roots of f{z) is the exterior of a 
circle Ci, the locus of the roots of Fi(z) consists of the 
exterior of Ci (if n > 1), and the exterior of another circle 
Ci' defined as the circle traced by that root of Fi{z) other 
than z\ when the point z\ = z2 — • • • = zn traces the circle 
Ci. If £ is a root of Fi{z) interior to the circle Ci and on 
the boundary of its locus, z must lie on Ci', the point 
z\ = £2 = • • • = zn lies on Ci, and the line zzi is parallel 
to the axis of reals. 

We return to Theorem II for the polynomial Fi(z), and 
suppose that there are precisely two circles Ci, namely Ci 
and C2. It is clear from the field of force that no point z 
not lying on or between the common external tangents to 
Ci and C2 can be a root of (3). Moreover it follows from 
the special case of Theorem I mentioned above that not 
every point z lying between these tangents can be a point 
of the locus of the roots of (3). In the general case m > 1, 
W2 >* 1, there are four circles Cj of which two are the circles 
Cx and C2, and one of which has its center interior to the 
interval ah a2. 

* Here and below we make use of the lemma: The force at a point P 
due to k particles situated in a circular region not containing P is 
equivalent to the force at P due to k coincident particles also in C. See 
Walsh, TBANSACTIONS OF THIS SOCIETY, vol. 22 (1921), pp. 101-116, 

Lemma I, p. 102. 
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Let z be a fixed point on the boundary of the locus of 
the roots of Fi{z). Then z is not interior to a circle Ci or 
C2 which is the locus of more than one root olf(z), and is 
not interior to both circles, for in either of these cases z 
as well as any neighboring point can be made a multiple 
root of f(z) and hence a root of F±(z). Suppose also that 
z is not on Ci if m ^ 1 nor on C2 if n2 > 1. Then (as in I, 
p. 47) we may replace the n\ particles of Ci by n± equivalent 
but coincident particles £i in Ci, the n2 particles of C2 by 
n2 equivalent but coincident particles £2 in C2\ and finally 
we may replace these particles £i and £2 by an equivalent 
w-fold particle £. When £1 and £2 have the circles Ci and 
C2 as their loci, the locus of £ will be either the interior 
of a circle C or the exterior of a circle C, and C will cut 
the line zz' through z parallel to the axis of reals either at 
the same angle as do the circles Ci and C2 or at the 
supplementary angle according as the locus of £ is interior 
or exterior to C* 

Corresponding to the particular point z that we are con
sidering on the boundary of its locus, we may choose 
definite points zl7 z2, . . ., zn, fi? £s, £, so that z is a position 
of equilibrium in the field of force. The point £ must lie on 
the boundary of its locus C, and z must lie on the boundary 
of the locus of the roots of Ft (z) when the locus of £ ( = z± 
= z2 = • • • = zn) is considered merely to be the locus C. 
For a small change in z makes only a small change in C. 
If z} C, and C have not the relation stated, a sufficiently 
small but arbitrary change of z can be made, and £ can be 
chosen in the new locus C so that z is still a root of F± (z). 
That is, the original point z is not on the boundary of 
its locus. 

The point £ must therefore lie at an intersection of the 

* It is conceivable that this locus of C should consist of the entire 
plane. This slight difficulty can be overcome as in I, p. 50. It is 
possible that the locus of C should be a half-plane. The reader will 
make the necessary modifications in the present treatment, which are 
indeed modifications of phraseology rather than of method. 
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line zz' and the circle C\ I is on the boundary of its locus. 
By the properties of the circles Cl9 C2, C, and the angles 
in which they are cut by the line zz' (as in I, p. 49), the 
points £i and £2 must lie on Ct and C2 respectively and on 
the line zz'. In fact, & and £2 must be those intersections 
of zz' with Cx and C2 which cause z, the root of the corre
sponding polynomial Fx (z), to lie on one of the circles Cj. 
Thus we have proved that whenever z lies on the boundary 
of its locus, it lies on one of the circles Cj. 

The locus of the roots of F±(z) contains all the points 
interior to the circles Cj\ indeed, it is obvious by a simul
taneous translation of the points ai as the roots of ƒ (z) and 
of the roots of the corresponding polynomial F±(z) that every 
point on or within a circle Cj is a point of the locus. Every 
point of the boundary of the locus is a point of one of the 
circles Cj, no point not between the two common external 
tangents of the circles CI, Cj is a point of the locus, so the 
locus consists of precisely the points stated in Theorem II. 

The remark in Theorem II concerning the number of roots 
of J7! (Z) in the regions Cj follows (as in I, p. 50) from a con
sideration of the roots of Ft (z) when the roots of f(z) are 
the points aiy and from the continuity of the roots of Fx(z) 
considered as functions of the roots of f(z). Theorem II 
is now completely proved for the case h — 2. 

The same method is used in every case. We replace the 
particles gl9 z2, . . . , zn by a single equivalent particle £, 
whose locus is a circular region. This particle £ is on the 
boundary of its locus if z is on the boundary of its locus, 
and the properties of the boundary of the locus of £ in 
connection with the properties of the circles d enable us 
to prove that the point z is on one of the circles Cjy and to 
prove the theorem in its generality. Further details are 
left to the reader. 

Theorem II is a result dealing with the interiors of circles 
as the loci of roots of polynomials. We may use the same 
method to prove a result similarly dealing with the exteriors 
of equal circles whose centers lie on a line parallel to the 
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axis of reals, or dealing with half-planes bounded by lines 
perpendicular to the axis of reals. Rotation of the plane 
in any of these cases or in Theorem I gives a new result 

We proceed to prove Theorem I by successive application 
of Theorem II. Suppose a0 + 0 and denote by cu c2, . . . , cn 

the negatives of the various roots of (1); these have been 
assumed real. Theorem I has been proved for the polynomial 

(4) ^i ( * ) = ƒ ( * ) + * / ( * ) • 
From this fact follows Theorem I for the polynomial 
F2(e) = F^z) + c2F{(z) = f(z) + (d + c2) ƒ (*) + *<*ƒ"(*). 
For, by the part of the theorem already proved and applied 
to Ft {z), the locus of the roots of Ft (z) consists of certain 
circles. Since the roots of Fx(/) lie in these circles, it 
follows that the roots of F2(z) lie in certain other circles, 
which are precisely the circles Cj of Theorem I that pertain 
to F2 (z) as a linear combination of f(z) and its derivatives. 
It follows from a simultaneous translation of the a* and 
the roots of f(z) that every point of the last-mentioned 
circles is a point of the locus of the roots of F2 (z). Thus 
Theorem I is proved for F2(z) and by induction can be 
proved for 

(Fs{z) = F2(z) + c,F^(z), 

(5 ) \Ft(g)==Fs(fi) + ciFi(?), 

\Fn{z) = Fn-~i(z) + CnFLii*) = F(g). 
It should be noted, however, (as in I, p. 53), that the 

reasoning just used is not of universal validity. For if the 
circles Cj which contain the roots of Ft(z) are not mutually 
external, we cannot say that they contain respectively the 
proper number of roots of F± (g) for a new application of 
Theorem IL* Our reasoning is valid only in the case that 
the circles Cj which are the loci of the roots of F± (z) have 
no point in common one with another, and similarly for 
the sets of circles Cj which are the loci of the roots of 

* This is, in fact, not merely a fault of our particular statement or 
method of proof of Theorem II. See I, pp. 36, 37. 
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F2{z), F3(z), . . . , Fn-i{z). This condition will always be 
satisfied in Theorem I if, when the polynomial (1) and the 
points cci are given, the common radius of the circles Q 
is sufficiently small, and this is the meaning we give to the 
restriction in the enunciation of the theorem, "if the circles Ci 
are sufficiently small". In order to prove the theorem up to 
but not including the last sentence, we need not require 
that no two of the circles Cj which are the loci of the 
roots of Fn(è) = F{z) should have a point in common, but 
if this condition is satisfied the number of roots of F(z) in 
those circles Cj is as indicated. This fact is proved (as 
in I, p. 50) from the continuity of the roots of F{z) con
sidered as functions of the roots of ƒ(#). 

It still remains, in the proof of Theorem I, to remove the 
restriction a0 + 0. This can be accomplished by remembering 
that Theorem I has already been proved* when F{z) is 
simply a derivative of ƒ (#). Hence application of Theorem I 
for the case a0 41 0 to a derivative of f(z) shows that the 
roots of F(z) must lie in the circles Cj. Every point on or 
within the circles Cj is a point of the locus, for this follows 
by a translation. We naturally require as before that the 
circles C% be sufficiently small. The number of roots of 
F(z) in a circle Cj can be determined by continuity, so 
Theorem I is completely established. 

We add the statement of a theorem which is almost trivial 
when the preceding development is considered, but which 
seems nowhere to have been mentioned in the literature.f 

THEOREM III. If the roots of a polynomial f (z) of degree n 
lie in a region B bounded by two parallels to the axis of 
reals, and if the roots of (1) are all real, then the roots of 

* In I, Theorem X. The proof of the present note is also valid for 
this case; we merely choose the left-hand member of (3) to be zero to 
prove the result for the first derivative, and apply repeatedly for the 
other derivatives. 

f In connection with these theorems for the polynomial Ft (#), see 
Fujiwara, TÔHOKU MATHEMATICAL JOUENAL, vol. 9 (1916), pp. 102-108. 
See also Uchida, TÔHOKU MATHEMATICAL JOUENAL, vol. 10 (1916), 
pp. 139-141. 
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F(z) = a0 ƒ (z) + a.fiz) + a2 ƒ "(s) + • • • + W ™ te) 

afeo Ke in i2. 
The generalization of Theorem I for the case k = 1 but 

which makes no restriction on (1) nor on the size of the 
circles d (i. e., II, Theorem VI) gives us the following 
theorem. 

THEOREM IV. If all the roots of a polynomial f{z) lie in 
the strip 

a1 < y <̂  a2 

of the complex (z = x + iy) plane, and if all the roots of 
the polynomial (1) lie in the strip 

then all the roots of 

F{z) = aof(Z) + o x / (?) + a,/" (*) + • • • + anf
n\z) 

lie in the strip 

Innumerable theorems of the same nature as Theorem IV 
can be proved by II, Theorem VI. We give one further 
example, after a preliminary remark. 

If two convex regions Ex and E2 are the respective loci 
of points zt and z2, then the region R which is the locus 
of the point z = zx-\-z2 is also a convex region. We shall 
speak of B as the sum of the regions E± and B2. Then we have 

THEOREM V. If two convex regions are the respective loci 
of the roots of f(z) and of (1), then their sum is the locus 
of the roots of F{z). 

Theorem V obviously includes Lucas's theorem for convex 
regions on the roots of the derivative of a polynomial. 
Theorem V includes, and can be proved from Theorem IV. 
Theorem IV includes Theorem III, and Theorem III includes 
the theorem due to Hermite which we have been using in 
Theorem I, to the effect that if the roots of f(z) and of (1) 
are real, then the roots of F(z) are also real.* 

* Reference has been made Takagi's work in this connection. 
Theorem V does not directly extend to the case of infinite convex 
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Let us study the case of real polynomials in more detail. 
We shall prove for them a theorem analogous to Theorem I. 

THEOREM VI. Let intervals 1% (i = 1, 2 , . . . , k) of the axis 
of reals, whose extremities are a^ fii (cci<fii) be the respective 
loci of m roots of a variable polynomial f(z) which has no 
other roots. Then if the roots of the polynomial (1) are all 
real, the locus of the roots of F(z) is composed of a number 
of intervals Ij of the axis of reals. The left-hand ex
tremities of the intervals Ij are the roots of F(z) when the 
roots of f{z) are concentrated at the points ai\ the right-hand 
extremities are the corresponding roots of F(z) when the roots 
of f{z) are concentrated at the points fii. Any interval Ij which 
has no point in common ivith any other interval Ij contains 
a number of roots of F(z) equal to the multiplicity of its 
left-hand extremity as a root of F{z) when the roots of f{z) 
are the points ait If the intervals Ii are all of the same length, 
the intervals Ij are also all of this same length. 

Theorem VI has been proved (II, footnote, p. 180) for the 
case k = 1, and has been proved (I, Theorem XV) for general 
k for the case that F(z) is a derivative of f{z). The proof 
of this latter theorem is to be followed closely in the proof 
of Theorem VI. We shall prove Theorem VI under the 
assumption that none of the intervals Ii is a point; to include 
this more general case requires merely a slight change in 
phraseology. In the theorem as stated the intervals are 
assumed to be finite, but the theorem can be extended to 
include infinite intervals. We prove the theorem first for 
the case of the polynomial 

F1(z)=f(z)+clf(z). 

regions, using the ordinary extension of the definition of convexity, 
although the following is an immediate result of II, Theorem VI: 

If the roots o f (I) have as their locus any region R and if the roots 
of f(z) have as their locus the region 0, 

\z — a | < r, where a and r are fixed, 
then the locus of the roots of F(z) is the region S which is the locus of points 

£=p + z, 
where p and z have the respective loci R and C. If R is the interior 
or exterior of a circle, so also is S. 
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Let us denote by afü the roots of Fm(z) when the roots 
of f(z) are concentrated at the points ap «<m) <j «jm> when 
i«cj, and similarly by /^w) the roots of Fm(z) when the 
roots of f(z) are concentrated at the points fiv /^m) <; /ïjm> 
when i -cj. We shall show that the intervals («<m>, fif*) 
form the locus of the roots of Fm(z). 

We start with the roots of f(z) concentrated at the 
points cc{ and move these roots continuously toward the right 
until they reach the points &. The roots of Ft (z) also vary 
continuously; they start at the points a\ and reach the 
points fil. We can even say that the rth root zf

r of Fx (z) 
(roots numbered in order from the left) varies continuously. 
Let us now prove that z'r always moves, if at all, toward 
the right. 

The equation determining zf
r is of the form 

/g-v Ci f(z) d Zr — Yi 

Zr — y 2 Zr — ï s 

where the yi are the roots of ƒ (#), coinciding in any multi
plicities desired. We compute the values 

d O mx m2 ms 

~d£ ~ ~ (zr-yi)2~l^W (z'r-ys)2' 

dyi ~~ (z'n — yi)2' 

It is always true that dzrldyi is positive, so zf
r always in

creases with yi* 

* This result is the chief tool in the proof of Theorem VI, and as it is 
true that dz'r/dfi + 0 for a large class of polynomials, Theorem VI can 
be suitably modified to apply to much more general polynomials, in 
particular to f'{z), where f{z) is real but has not necessaiily all real 
roots. Theorem VI holds without change for polynomials and the iterates 
of polynomials of the type 

{a-b*z)f(z) + cf(z\ 
where a, &, c are real and the roots of ƒ (z) are real. This last class 
of polynomials has recently been considered by Nagy, JAHKESBEEICHT 
DEB VEEEINIGUNG, vol. 31 (1922), pp. 238-251. 
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Equation (6) is no longer valid to determine zr if zr is 
located at a multiple root of f(z). Under these circum
stances, if n does not coincide with zr, the motion of n does 
not change the position of zr

r. If n does coincide with zr 

and if n is moved to the right, zr is either unchanged or 
moved to the right; this follows immediately from the fact 
that a £-fold root of f(z) is a (t—l)-fold root of F1(z), 
and from the fact that every interval of the axis of reals 
bounded b}r roots of f(z) contains at least one root of Fx (z). 

From the general fact, then, that the rth root zr of Ft(z) 
varies continuously and in one sense under the indicated 
variation of the roots of f(z), it follows that zr

r traces the 
entire interval from ar to fir and can never lie outside that 
interval. The determination of the locus of Theorem VI is 
now complete for the polynomial Fx (z). The number of roots 
of Fx (z) in an interval (arj fir) having no point in common 
with any other interval («£, fi'8) is easily found by continuity. 

When the roots of f(z) move from the points ai continu
ously to the right, the roots of Fx (z) move from the points a\ 
continuously to the right, and from the formulas (5), the 
roots of F2 (z) move from the points a" continuously to the 
right, and the roots of Fm(z) move from the points «<m) con
tinuously and to the right. This gives us Theorem VI for 
the case a0 + 0; the restriction a0 ^ 0 can be removed with 
no difficulty as in the proof Theorem I of the present paper. 

HABVABD UNIVERSITY 


