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SQUARE-PARTITION CONGRUENCES * 

BY E. T. BELL 

1. Introduction. It is evident that the theory of parti­
tions and that of the representation of an integer as a sum of 
squares must be closely interwoven since both originate in 
the elliptic theta and modular functions. In seeking the 
relations thus suggested, we find at the outset some remarkable 
types of congruences which deserve independent notice on 
account of their generality. Each congruence is to the odd 
prime modulus p; the most frequent type concerns the func­
tion expressing the number of ways in which an integer is a 
sum of p, 3p, p2, 3p2, p8 (s > 0) or rp squares, where r is 
prime to p, and one of the following : the familiar denumerants of 
the classical theory of partitions; two new functions depending 
upon those partitions of an integer in which no part appears 
more than r times. Of the latter functions those corresponding 
to r = 2, 3, 6 play a central part in the entire theory. The 
subject is extensive. We shall give a sketch of the methods 
used sufficient for its systematic development. For the #, q 
formulas see, e.g., Tannery-Molk, Fonctions Elliptiques, and 
note that we use Jacobi's theta notation (Werke, vol. 1, p. 501), 
so that 7T is omitted from #/. 

2. Fundamental Identities. In the usual notation g;- = q3'(q), 

q0 = n ( l - g2*), q2 = n ( l + g™), 
K) qi = n ( l + g2"), g3 = 11(1 - qm), 

extending to n = 1,2, 3, • • -, m = 1, 3, 5, • • •, Euler's identities 
are 
(2) qiq2qz = gi(Vg)g3 = 1, go = 2 ( - l )V n 2 + n , 
S extending to n = 0, ± 1, ± 2, • • •. Denote by Aj(n, r) 
the coefficient f of q2n in qf (j = 0, 1), of qn in qf (j = 2, 3). 

* Presented to the Society, April 7, 1923. 
t The properties of these coefficients have been discussed and a practi­

cable method for their numerical computation given in a paper which 
will be published in the AMERICAN JOURNAL. 
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By convention Aj(0, r) = 1. By (1) and the first of (2), 

(3) A1(n) r) = (~ l)M2(n, - r) - Az(n, - r) (r 5 0). 

Henceforth #> is an odd prime > 0, r an arbitrary integer 
> 0. If s 9e 0, p, the binomial coefficient (?) is divisible by p, 
and hence by (1) we have, using Fermat's theorem, 

(4) 9/p =?/(?*) modp, ( j = 0,1,2,3), 

which means that the coefficients of like powers of the param­
eter q are congruent modulo p. Hence we have by (1) and 
(3), according as n is or is not prime to p, 

(5) Aj(n, rp) = 0 or Ajinjp, r) mod p, 

(6) Ai(n, — rp) = 0 or (— l)M2(rc/p, r) mod p, 

( 7 ) ( - l)M2(n, - rp) s 48(rc, - rp) s 0 
or Ai(n/p, r) mod p; 

and by (4) and the second of (2), according as n is not or is 
| p ( 3 a 2 + a ) ( a $ 0 ) , 

(8) A0(n, p) = 0, or ( - l ) a mod p. 

The summations referring to n = 0, ± 1 , ± 2 , • • -, 
m = dz 1, zb 3, ± 5, • • •, we have êj = &j(q), 

(q) M-q) = »z=?q«\ ^ V ) = 2(-l|m)mg»»2, 
W 02(<Z4) = 2 3 - , 

where (a\b) is the Legendre-Jacobi symbol, (— l |a) 
= ( - l)<«-D/2 for a odd; and 

n m * = M*\ Mq') = 2q0(q
i)qi2(qi)q, 

K } * V ) = 2g„V)?. 
From the last of these, it follows by (4) that 

(11) A0(n, dp) = 0 or (— \\a)a mod p, 

according as n is not or is p(a2 — l)/8 where a > 0 is odd. 
The Aj{n, r) are connected with partitions as follows. If 
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in a given partition of n no part appears more than r times and 
each of precisely aj distinct parts occurs exactly j times we 
call the hypercomplex number (ai, a^, • • -, ar) the r index of 
the partition, and denote by Bn{ai, Ch, • • •, ar) or Bn(au 02, 
• • •, ar) the total number of partitions of n having this index 
according as all the parts are not or are restricted to be odd. 
As mentioned, the cases r = 2, 3, 6 are of special importance. 
For our purpose here it is sufficient by what precedes to 
consider in these cases Aj(n, r) only when j = 1, 2. From (1) 
we have 

Ax(n, 2) = 2Bn(ai, 02)2% 
A1{n, 3) = ZBn(au a2, a3)3

ai+% 
Ax(n, 6) = Sfiw(ai, • -, a6)2ai+2a3+a53ai+a2+a4+a55a2+a3+a4, 

the summations referring to all (ah 02), • • -, (ax, • • -, a6) for n 
fixed.* The A2(n, r) for r = 2, 3, 6 are written down from 
these by accenting B. 

Let P(ri), Q(ri), R(n) denote respectively the total number 
of partitions of n, the number of partitions of n into odd 
parts, and the number of partitions of n into distinct odd 
parts. Then, from (1), (2), we have 

Mn, - 1) = P(n), A^n, 1) = Q(n), 
A2(n, 1) = ( - l )M 3 (n , 1) = R(n). 

The square functions most frequently occurring are N(n, r), 
the number of representations of n as a sum of r squares whose 
roots are = 0, and M(n, r), the number of representations of 
n as a sum of r odd squares whose roots are > 0. Obviously 
M(n, r) = 0 if n is not of the form 8k + T, and 

(12) #3
r(g) = ^qnN{n, r), û2

r(qé) = 2r2qSn+rM(8n + r, r), 

where S refers to n = 0, 1, 2, • • -, with the convention that 
N(0, r) = 1. 

* The Aj(nf 2) with a generalization have been fully discussed in a 
paper to appear in the ANNALS OF MATHEMATICS. They are remarkable 
as introducing for the first time a species of double periodicity into the 
theory of partitions. The Aj(n, r), r = 2, 3, 6, 9, have been specially 
considered in the paper cited previously; they have many interesting 
connections with the class number for binary quadratic forms of a negative 
determinant. 
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Consider all the representations of n as a sum of r squares 
of numbers < 0 of the form 6& + 1, and let SQ(U, r), Si(n, r) 
denote the respective numbers of these representations in 
which an even, an odd number of squares have square roots 
of the form 12k + 7. Write S(n, r) = S0(n, r) - Si(w, r). 
Then S(n, r) vanishes identically if n is not of the form 24& + r, 
and from the second of (2) we have 

(13) A0(n, r) = S(24n + r, r), 

whence it follows by (8) that 

(14) S(24n + p, p) = 0 or ( - l)a mod p, 

according as n is not or is %p(3a2 + a)(a% 0), and by (11) 

(15) S(2±n + Zp, Zp) = 0 or a ( - 1 |a) mod p, 

according as n is not or is p(a2 — l)/8, where a > 0 is odd. 
The congruences in this section appear to be sufficient for 

the systematic transposition of the classical theory of parti­
tions into congruence relations of the type illustrated in the 
next. The labor of verifying the congruences numerically 
may be lightened by observing that N(n, p) is congruent 
modulo p to twice the total number of representations of n 
as a sum of p squares with roots all > 0. Similar obvious 
remarks apply to any of the square functions encountered 
except those involving only odd squares. 

3. Congruences. A short selection must suffice. Equat­
ing coefficients of like powers of q in $zvq<T2rp = qorp we find 

2A2(s, — 2rp)N(2n — s, rp) = A0(n, rp), 

the summation referring, as always henceforth unless otherwise 
noted, to all such s ^ 0 as render the first arguments of the 
summands positive or zero. Applying (7) we get 

(16) 2(— l)Mi(s, 2r)N(2n — sp, rp) s A0(n,rp) modp, 

whence by (11) when r = 3, 

2 ( - l)Mi(*, 6)N(2n - sp, Sp) s 0 
or a(— l |a) mod p, 
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according as n is not or is p(a2 — l)/8, where a > 0 is odd. 
The $, q identity being read in the alternative form d/p 

= qorpq22rp gives by (5) in the same way 

(18) N(n, rp) = XAQ(S, r)A2(n — 2sp, 2rp) mod p, 

from which it follows by (5) that 

(19) n 4E 0 mod p: N(n, rp) = 0 mod p. 

From (18) and (5), we have 

(20) N(np, rp) = 2A0(s, r)A2(n - 2s, 2r) mod p, 

and hence by (8), 

(21) N(np, p2) s 2 ( - l)M2(rc - p(3a2 + a), 2p) mod p, 

where S extends to all a ^ 0 that make w ^ p(3a2 + a). 
Applying (5) to (21) we have 

(22) n 4E 0 mod p: N(np, p2) = 0 mod p; 

(23) iV(np2, p2) s 2 ( - l)aA2(n - (3a2 + a), 2) mod p, 

where S extends to all a ^ 0 that make n =^ 3a2 + a. Again 
from (20), (11) we find 

(24) N(np, 3p2) s Sa(~ 11a)A2(n-\p{a2-1), 6p) mod p, 

where S extends to all odd a > 0 that make 4.n S p(a2 — 1). 
Applying (5) to (24), we get 

(25) n 4s 0 mod p: N{np, 3p2) = 0 mod p, 

(26) N(np\ 3p2) = 2a(-l\a)A2(n-l(a2-l), 6) mod p, 

where S extends to all odd a > 0 that make 4n ^ a2 — 1. 
Similarly, from the second of (10), we find 

(27) 2Ai(s, - 2r)M(8n - 8s + r, r) = A0(n, r), 

(28) M(8n + r,r) = 2A0(s, r)-4i(n - 5, 2r). 

To derive the associated congruences we replace r by rp 
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and proceed as before. Thus (27) gives 

( 2 9 ) 2 ( - l)8A2(s, 2r)M(8n + rp - 8sp, rp) 
= Ao(n, rp) mod p; 

( 3 0 ) Z ( - iyAt(8, Q)M(8n + 3p - &p, 3p) s 0 
or a(— l |a) mod p 

according as w is not or is p(a2 — l)/8 where a > 0 is odd; 
while from (28), 

(31) M(8n + rp, rp) s 2^40(s, r)iii(w- — sp, 2rp) mod p; 

(32) 7i 4E 0 mod p: M(8n + rp, rp) = 0 mod p; 

(33) ikf(8wp + rp, rp) s= 2-40fo r)4i(n — *, 2r) mod p; 

(34) Jf(8np+p2 ,p2)=S(-l)Mi(n~-|p(3a2+a),2p) mod p, 

where 2 extends to all a ^ 0 that make 2n S p(3a2 + o)\ 

(35) Jf (8np2+p2, p 2 ) = 2 ( - l )Mi(n- | (3a 2 +a) , 2) mod p, 

where S extends to all a § 0 that make 2n S 3a2 + a; 

(36) n # 0 mod p: Jf (8np + p2, p2) = 0 mod p; 

7 M(8np + 3p2, 3p2) 
V ; s 2 a ( - 1 \a)A!(n - |p(a2 - 1), 6p) mod p; 

(38) n + 0 mod p: M(8np + 3p2, 3p2) s= 0 mod p; 

(39) ilf (8np2 + 3p2, 3p2) 
s 2 a ( - 1 \a)Ax{n - i(a2 - 1), 6) mod p, 

the summations in (37), (39) extending to all odd a > 0 
making the first arguments of A\ S 0. Putting r = 1 in (29) 
and applying (13), (14) we find 

2 ( - l)M2(s, 2)üf(8» + p - 8*p, p) s 0 
or (— l) a mod p 

according as TI is not or is |p(3a2 + a) (a $ 0). Similarly, 
from (16), under the same conditions, we have 

(41) 2 ( - l ) M i ( * , 2 ) t f ( n - * p , p ) s 0 or ( - l ) a mod p. 
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The number of congruences obtainable in this way is 
practically unlimited. Thus the memoir of Jacobi * on in­
finite series whose exponents are contained simultaneously in 
two different quadratic forms alone furnishes an inexhaustible 
supply, and the modular equations in elliptic functions give 
many more. Quadratic forms other than simple sums of 
squares appear in this connection. For example consider all 
the representations of n in the form 

a i 2 + 0 2 2 + • • • + G r 2 + 3 ( f c 1
2 + & 2 2 + • • • + 6r 2 ) , 

in which ay, bj $ 0 and ctj == 1 mod 6, bj = 1 mod 4 
(j = 1, 2, • • -, r). Let To(n, r) denote the total number of 
these representations in which an even number of the bj are 
of the form 8k + 5, and Ti(n, r) the total number in which an 
odd number of the bj are of the form 8k + 5. Write 

T(n, r) - r0(n, r) - Tx{ny r). 

Then Jacobi's result {Werke, vol. 2, p. 285) 

ç V ( # 2 4 ) = 2 ( - l)Y6 i + 1 ) 2 + 3 ( 4 f c + 1 ) 2 , 

where 2 refers to i, k = — <x> to + oo, gives 

A0(n, 2r) = T(48n + 4r, r), 

from which we find by successive applications of (5), for 

(42) n s 0 mod p : T(48np8 + 4rp8+1, rp8+l) = 0 mod p, 

(43) T(48np8+1 + 4rp8+1, rp8+1) = A0(n, 2r) mod p, 

(44) r(48np5+1 + 4p8+1, p8+1) s ^„(n, 2) mod p. 

Considerations of space preclude the giving of further ex­
amples. 

THE UNIVERSITY OF WASHINGTON 

* Werke, vol. 2, pp. 219-288; CRELLE'S JOURNAL, vol. 37, pp. 61-94, 
221-254. 


