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RELATIONS BETWEEN KINDRED RIEMANNIAN 
P AND Q FUNCTIONS* 

BY D. R. CURTISS 

1. Definitions and Properties of Riemannian Functions. A 
Riemannian P function, as the term is used by Klein f and 
others, is a generalized hypergeometric function, i.e., a solution 
of a homogeneous linear differential equation of second order 
having but three singular points, all of which are regular. A 
Q function is a hypergeometric function which has also 
apparently singular points, that is, points for which the 
function is not singular, but which are singular points of the 
linear differential equation of second order satisfied by the Q 
function. A linear transformation carries the three regular 
singular points into the points 0, oo, 1, and the differential 
equation of a Q function has then the form, as given in my 
thesis,! 

»> 2+4!+<«=<>• 
where 

P 

= I " 1 - X' ~ x" + * - "' - "" i g 1 " «J - <r"~\ 
|_ X X — 1 fa=l X — Si J ' 

q = -7 rr + M M H 7 + JL • 
X(X — 1) L X X ~ 1 i=l X —• Si J 

The sum of the constants X, /x, v, must be 1, 0, or a negative 
integer, and, as a consequence of the condition that the points 
Si are not to be singular points of solutions, it follows that the 
a's are zero or positive integers and the accessory parameters 
Ai verify a system of k equations each of which is quadratic 
or of higher degree in the Ai. 

The symbol 

* Presented to the Society, April 14, 1922. 
t See especially Klein's lithographed lectures, Ueber die Hypergeometrische 

Function. Both the terms P function and Q function were used by 
Riemann, Werke, p. 67 and p. 323. 

t Binary families in a triply connected region^ MEMOIRS OF THE AMERICAN 
ACADEMY, vol. 13 (1904), No. 1. 
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is used to denote any Q function which is a solution of (1). 
The numbers X' and X" are called the exponents of the singular 
point x = 0, for reasons familiar in the theory of linear 
differential equations; ix and \x" are the exponents of x = oo ; 
and v and v" are the exponents of x — 1. If the sum of 
these exponents is 1 — n, the function is said to be of order n. 

For a P function the terms in (x — Si) disappear from the 
differential equation, and the sum of the exponents is 1. A 
P function is, then, a Q function of order zero, and the family 
of P functions satisfying a differential equation (1) free of 
terms in (x — Si) is completely determined by its exponents. 

In Gauss's celebrated memoir on special hypergeometric 
functions,* it is shown that between every three such functions 
that are kindred, that is, whose corresponding exponents differ 
by integers or zero, there exists a relation linear and homo­
geneous in the functions, with coefficients that are polynomials 
in x. Riemann showed the fundamental importance of the 
monodromic group in these questions. Gauss's kindred func­
tions are functions that have the same monodromic group. 
By the use of this conception Riemann gave a new proof of 
the theorem of Gauss for P functions, and was able to assign 
an upper limit for the degree of each coefficient. 

In my thesis f I have extended this theorem to the case of 
three Q functions 

(2) &(H/*//"'//*). (»=1,2,3), 
\ Ai , IXi , Vi , J 

which are kindred in the sense that they have the same mono­
dromic group. In order that this be the case, corresponding 
exponents must be equal or differ by integers, but this condi­
tion alone is not sufficient. If, however, the Q functions 
belong to irreducible families, i.e., families of which no member 
is a solution of a homogeneous linear differential equation of 
the first order with single-valued coefficients, they will have 
the same group if corresponding exponents are equal or differ 
by integers. 

* Disquisitiones generales circa seriem infinitam, WERKE, vol. 3, p. 123. 
f Loc. cit., p. 48. 
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Let us write 

AiX= | ( V - V ' ) - ( V - VOL 
A2X= | ( V - V ' ) - ( V - V O I , 
A3X= |(x/ — x/O — ( V - VOI, 

and similarly for Ai/x, A2ju, A3JU, Ai*>, A2*>, A3j>. Then if the 
three families are irreducible and are of order n\, 7h, w3, re­
spectively, three kindred functions (2) satisfy an identity 

(3) fcQi + &Q2 + 4*Qz = 0, 

where </>i, <£2, 03 a r e polynomials of degrees not greater than 

§(AjX + AIM + Ai*> + m + n3 - 2), 
(4) £(A2X + A2M + A2*> + ns + m - 2), 

|(A3X + A3/x + A3z> + wi + rh - 2), 

respectively. To each function Qi of the first family there 
correspond functions Q2 and Q3 of the other families which 
verify (3). From the way in which (3) is derived it follows 
that 0i cannot vanish identically unless there is a single-
valued function F\ such that for every function Q2 of the 
second family the corresponding Q3 of the third verifies 
Q3 = F1Q2. Similarly as regards the identical vanishing of 
02 or <£3. 

In particular, we may take Q2 and Q3 as P functions, and it 
follows that every irreducible Q function can be expressed as 
a linear function with rational coefficients of two P functions. 
Or again, we have a similar expression for a Q function in 
terms of a P function and its derivative. The formulas (4) 
for the degrees of the coefficients <j> in (3) enable us to supply 
for two well known theorems regarding relations between 
kindred P and Q functions proofs that have hitherto been 
lacking. 

2. A Linear Expression for a Q Function in Terms of a P 
Function and its Derivative, with Polynomial Coefficients, In 
Riemann-Weber's Die Partiellen Differentialgleichungen der 
Mathematischen Physik* there is given a brief account of some 
of the properties of P and Q functions. Thus we find on 
page 44 

* Vol. 2, pp. 40-54. 
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© *•<!-*>•«(:,;£;;,;*) 
_ „(a +S, 0 - Ô- e, y + e, \ 
-*\a'+t>,P'-ô-e,y'+e,X)^ 

where ô and e are any numbers we please. The function Q 
has the same apparently singular points with the same ex­
ponents as Q, but not, in general, the same accessory param­
eters. Also (p. 51), if 

<6) p-pÙ, ?,}:*)• 
we have 
m dP_Q (a - 1,0 + 1 , 7 - l , r \ 
( 7 ) Tx-Ql\a'-l,P'+l,y'-l,X)' 
but here we need the qualification (not mentioned in Riemann-
Weber) that none of the exponents for P is zero. Combining 
(5) with (7), we obtain 

It is then remarked that if A(x) and B(x) are polynomials of 
degrees n — 1 and n respectively, with no zeros at 0 or 1, 
the sum 

(9) A(x)x(l- x)^-+ B(x)P 
ax 

is in general a Q function of order 2n with the exponent scheme 

™ « & £ : : • : * ) • 
We may, however, choose A(x) and B(x) so that (9) is a Q 
function of order 2n — 1 whose symbol is 

\ a\ $ - n, y', ) 
The question is then raised as to whether every Q function 

whose symbol is (10) or (11) can be expressed in form (9), and 
a proof is suggested by a count of constants in (9) and in the 
general Q function (10) or (11). This is unconvincing, how­
ever, because the 2n effective constants in (9) correspond to 
2n possible apparently singular points in (10), for example, 
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and the question as to whether the accessory parameters A 
can be determined is unanswered. 

Let us now attack this problem with the aid of (3) and (4), 
under the restriction that the families concerned are irredu­
cible. In (3), let 

Qi = Q, & = - Q, & = - P, 
as in (10), (8) and (6). Then all the numbers AX, A/*, Av 
are zero, and the degrees of 0i, 02 and 03 are less than or equal 
to 0, n — 1 and n, respectively. Thus we have 

(12) CQ = Ux)x{l ~x)~ + Ux)P, 

where the degrees of 02 and 03 are not greater than n — 1 
and n respectively. The constant C cannot vanish, since a 
relation 

dP 
ax 

where F\ is a single-valued function of x, cannot be verified by 
all the members of a P family. Division of (12) by C gives 
the desired representation for the Q function (10) by the 
expression (9). The same result follows if the Q function (11) 
is used instead of (10). 

This representation holds even when one or more of the 
exponents in (6) is zero. To prove this we consider the 
families 

z5(i - xyp, 
x\l - x)% 

where P has the symbol (6) and Q the symbol (10) or (11), the 
numbers 8 and e being so chosen that in the new families no 
exponent is zero. For these functions (12) becomes, after 
division by C, 

x\l - x)eQ = <h(x)x(l -x)4- [x\l - x)€P] 
ax 

+ Mx)Ai - xyp, 
where 02 and 03 are polynomials in x of degrees not greater 
than w—l and n respectively. If we carry out the indicated 
differentiation, rearrange terms and divide by xd(l —• x)% we 
have 
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fJP 
Q = Ux)x{l - x) j^+ {4»(x)[8(l - x) - ex] + <M*)}P, 

which is of the form desired. 
There remains the question whether we can dispense with 

the assumption that the families are irreducible. In my thesis 
I have shown that there are reducible Q families which do not 
have the same group as any P family. Obviously no such Q 
family (10) or (11) can be expressed in form (9), but particular 
members might be so expressed in terms of particular P 
functions. However, I have shown in my thesis that formula 
(3) holds for any three families having the same group, and 
(4) holds also when there are no semisingular points. Hence 
the representation we are discussing holds even in reducible 
cases provided Q and P have the same group and have no 
semisingular points. 

3. A Linear Expression for a Q Function in Terms of P 
Functions, with Constant Coefficients. The other theorem, for 
which I have found no previous proof other than a count of 
constants, equally unconvincing, is that of Klein * which states 
that to form a Q function of order K in the most general way 
we must make a linear combination, with constant coefficients, 
of K + 1 kindred P functions. The statement is somewhat 
ambiguous; however, we shall now show that it is true, in the 
sense that every Q function is so expressible, with reservations 
in certain reducible cases as in § 2. This answers a question 
raised on page 49 of my thesis. 

We will first suppose the Q family irreducible. If of even 
order we use the notation (10), if of odd order, (11), and 
express Q, by formulas (3) and (4), in terms of the two kindred 
P families, P and P , where P has the symbol (6), and P the 
symbol 

This gives us 

(14) CQ = Ux)P + <h(x)P, 

where C is a constant, and $2 and fa are polynomials in x of 
* Hypergeometrische Funktionen, p. 233. 
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degrees not greater than n — 1 and n respectively in case Q 
ls of form (10), and of degrees not greater than n — 1 each if 
Q is of^form (11). The form of the exponents at zero shows 
that P cannot be equal to P multiplied by a single valued 
function P, hence C is not zero and we can divide through by 
C. A typical term of the product <j>s(x)P is 

cis) a * * h % - v x ) = a k P k ( « + k>tr-k> \>A 
where ak is ji constant; similarly the product <t>i{x)P is a sum 
of terms bkPk- Thus Q is expressed in the desired form 

(16) Q= I>*P* + £«***»* 
if Q is of order 2n, or 

(17) Q=Z6»P»+Za*P f c 
&=0 fc=0 

if Ç is of order ^n — 1, where the a's and &'s are constants and 
the functions P& and P& are P functions as indicated in (15). 

As in § 2, we need additional hypotheses in case Q is reduc­
ible. Our proof is then not valid unless the families Q, P , P 
have the same group (which does not follow merely because 
corresponding exponents differ by integers) and no point is 
sem singular. In my thesis (p. 59) I have considered the 
exceptional cases for a Q function of order 1, and have shown 
that such a Q function can always be expressed linearly in 
terms of two kindred P functions if its monodromic group is 
possible for P functions. This proof requires the examination 
of various types and classes of reducible groups, and we shall 
not attempt here to discuss the corresponding problem for Q 
functions of order higher than 1. 

As a consequence of Klein's theorem it follows that every 
K + 2 irreducible Q functions of order K having the same regular 
singular points and the same exponents at these points, but 
whose accessory parameters may differ, are linearly dependent; 
and this conclusion holds in certain reducible cases. 

These theorems and methods of proof admit generalizations 
to the solut'ons of homogeneous linear differential equations 
of order n. 
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