
64 G. A. MILLER [Feb., 

of the form 2nX\ or X\j2n. Also for these values, we see from 
(38) that S(x) = j sinh mx, where j is plus or minus one, and 
must be the same for all such values of x, since (28) shows that 
(41) S(2x) = 2S(x)C(x). 

Finally, since (28) and (37) are the addition formulas for 
sinh mx and cosh mx, we see that these functions agree with 
S(x) (to within a sign) and C(x) for all multiples of Xi whose 
fractional parts are terminating decimals in the binary scale, 
and hence, since all the functions concerned are continuous, at 
all points. Thus under I, I I and I I I (c), the family is neces­
sarily A sinh mx -f- B cosh mx. 

7. Conclusions. In conclusion, we notice that since I and 
I I alone must determine one of the three types of families 
discussed, we may use any characteristic property of the 
types in place of I I I . Thus, we might replace I I I (a) by the 
assumption "Some member of the family vanishes twice," or 
"Every member of the family is bounded," This last state­
ment may be extended so as to give an alternative form of 
the assumption I I I , in terms of bounded, instead of non-
vanishing functions. That is, I I I (a), (6) and (c) above 
may be replaced by the following postulates: 

I I I (a'). There exist two linearly independent members of 
the family which are bounded. 

I l l (&')• There exists one member of the family which is 
bounded, and all other bounded members of the family are 
linearly dependent on this one. 

I l l (<?')• No member of the family is bounded. 
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1. Introduction. From the fact that the commutator 
quotient group is abelian, it results directly that there is no 
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group in which the number of operators in a complete set of 
conjugates is larger than the order of the commutator sub­
group. Hence the groups which satisfy the condition noted 
in the heading of this paper contain the largest possible number 
of operators in a complete set of conjugates. They evidently 
include all the abelian groups as a special case, since the 
commutator subgroup of every abelian group is the identity. 
On the other hand, they do not include any simple group of 
composite order, since such a group is identical with its 
commutator subgroup. 

Each of the groups which satisfy the condition noted in the 
heading of this paper must involve a co-set as regards its 
commutator subgroup such that all the operators of this co-
set have the same order. Moreover, whenever the commu­
tator subgroup contains more than one Sylow subgroup of a 
given order, it must transform these Sylow subgroups ac­
cording to a simply transitive group. If this were not the 
case, all the operators in a co-set with respect to the commu­
tator subgroup could not transform these Sylow subgroups 
according to substitutions of the same degree. This common 
degree would clearly have to be equal to the number of the 
Sylow subgroups of the same order diminished by one for 
every set of conjugate Sylow subgroups found in the com­
mutator subgroup. 

From the preceding paragraph it results that if a group G 
contains a set of conjugate operators whose number is equal 
to the order of the commutator subgroup of G, then this 
subgroup must satisfy certain conditions. In fact, some 
groups cannot be the commutator subgroup of any group 
whatsoever. For instance, it is easy to prove that no dihedral 
group whose order exceeds 4 can be a commutator subgroup. 
In fact, none of the non-invariant operators of order 2 con­
tained in such a group could be a commutator since the 
product of such an operator and some other operator could 
not transform the generators of the characteristic cyclic sub­
group into the same power of themselves as the latter operator. 
I t is also easy to prove that no symmetric group whose order 
exceeds 2 can be the commutator subgroup of a group. 
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In fact, if a symmetric group were the commutator subgroup 
of a group, an operator t outside of this symmetric group 
would have to be transformed into itself multiplied by an 
operator represented by a negative substitution of the sym­
metric group. I t is evident that this product could not 
correspond to t in an automorphism of the group when the 
order of the symmetric group is neither 2 nor 720. In the 
special case when the order of the symmetric group is 720 
this group admits 720 outer isomorphisms. If t transformed 
the symmetric group according to an outer isomorphism it 
results again that the given product could not correspond 
to t in an automorphism since this product would transform 
the operators of order 5 in the symmetric group into a different 
power than t does. While no symmetric group whose order 
exceeds 2 can be the commutator subgroup of any group 
whatever, every alternating group is the commutator subgroup 
of the corresponding symmetric group. An alternating group 
whose order exceeds 3 cannot, however, be the commutator 
subgroup of a group in which the number of operators in a 
set of conjugates is equal to the order of the commutator 
subgroup. I t is interesting to inquire what groups can be 
commutator subgroups of such groups. In the next section 
we shall prove that every abelian group has this property. 

2. Abelian Commutator Subgroups. Let H be an arbitrary 
abelian group of order A. I t is not difficult to construct a 
group G which has H for its commutator subgroup and in­
volves a set of h conjugate operators. When h is odd such a 
G can evidently be found by adjoining to H an operator of 
order 2 which transforms every operator of H into its inverse. 
The group thus obtained is clearly the generalized dihedral 
group of order 2h. 

The generalized dihedral group obtained by extending H 
by means of an operator of order 2 which transforms every 
operator of H into its inverse has evidently always for its 
commutator subgroup the group generated by the squares of 
the operators found in H, and the number of operators in 
each of its complete sets of conjugate non-invariant operators 
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of order 2 is equal to the order of this commutator subgroup. 
When h is even we can therefore construct the required G by 
first extending H by operators which are commutative with 
every operator of H and have for their squares the various 
operators in a set of independent generators of H whose orders 
are of the form 2a. By extending the abelian group H thus 
obtained by means of an operator of order 2 which transforms 
each of its operators into its inverse we obtain a group 
which has H for its commutator subgroup and in which the 
number of operators in the complete sets of conjugate non-
invariant operators of order 2 is equal to h. 

The order of the G thus constructed is equal to the order of 
H multiplied by 2/3+1, where /3 is equal to the number of the 
invariants of H which are of the form 2a. All the operators 
whose orders exceed 2 in this G are conjugate in pairs, while 
the number of the complete sets of h conjugates is 28. It is 
easy to construct by other methods groups which satisfy the 
given conditions. For instance, if we extend the generalized 
dihedral group of order 2h, obtained by extending H by means 
of an operator of order 2 which transforms every operator of 
H into its inverse, by means of the operators in its group of 
isomorphisms which are commutative with every operator of 
H, there results a group of order 2h2 which satisfies the con­
ditions in question. 

3. Number of Conjugates Equal to the Order of the Commutator 
Subgroup Diminished by One. The general problem of deter­
mining all the groups which satisfy the conditions expressed 
in the heading of the present paper seems to be quite difficult. 
There are, however, various special cases which may possibly 
contribute towards this general solution and which lead to 
interesting results. Among these is the case when the group 
G contains a set of conjugate operators whose number is one 
less than the order k of its commutator subgroup K, in addi­
tion to containing a set whose number is equal to fc. It is 
easy to see that the former condition implies the latter while 
the converse is evidently not true. 

In fact, if G involves a set of h — 1 conjugates, the remaining 
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operator in the co-set with respect to K to which these con­
jugates belong must be an invariant operator. Hence K must 
involve k — 1 conjugates under G and it must therefore be 
an abelian prime power group of type (1, 1, 1, • • • ) • Since 
the operators of K are transformed according to a transitive 
substitution group of degree k — 1 under G, there must be an 
operator of G which transforms them according to a sub­
stitution of degree k — 1. As this operator is commutative 
with only the identity in K it has k conjugates under G. 
Hence the following theorem has been established: 

THEOKEM. If a group contains a set of conjugate operators 
whose number is equal to the order of the commutator subgroup 
diminished by one, it must also contain a set of conjugate operators 
whose number is equal to the order of its commutator subgroup, 
and this subgroup must be an abelian prime power group of type 
( 1 , 1 , 1 , • • • ) • 

No co-set of G with respect to K involves more than one 
invariant operator, and when it involves one such its remaining 
operators constitute a single set of conjugates under G. The 
invariant operators in all of these co-sets constitute the central 
of G and this has only the identity in common with K. Hence 
G involves the abelian group which is the direct product of K 
and the central of G. Each of the operators of G which does 
not appear in this direct product has k conjugates under G, 
and the order of G is equal to k times the order of this direct 
product since the k — 1 operators of prime order contained 
in K are transformed under G according to a regular group. 
The fact that this group is regular results directly from the 
facts that it is transitive and abelian. 

Whenever a group contains a commutator subgroup of 
prime order p it must also contain at least one set of p con­
jugates, but when the commutator subgroup is neither of prime 
order nor the identity the number of operators in a set of 
conjugates is not necessarily equal to the order of the com­
mutator subgroup. If a group whose commutator subgroup 
is of order p contains also sets of conjugates involving more 
than one but less than p operators, each of its co-sets with 
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respect to K which involves less than p conjugates involves 
just one invariant operator. The other operators of such a 
co-set are conjugate in sets of k, where h is a divisor of p — 1 
and has the same value for all such sets. 

The fact that the commutator subgroup of G must be 
abelian whenever G contains a set of conjugate operators 
whose number is one less than the order of its commutator 
subgroup may also be regarded as a special case of the theorem 
that in any group whatever, the difference between the order 
of the commutator subgroup and the number of operators in 
a complete set of conjugates is a multiple of the number of 
the conjugates of any one of the operators of this set under 
the commutator subgroup. In particular, when there is a 
set of k — 1 conjugate operators they must be commutative 
with every operator of K and hence K must be abelian. 

4. The Number of Conjugates of Every Non-Invariant Operator 
is Equal to the Order of the Commutator Subgroup, When the 
number of operators in every complete set of non-invariant 
conjugates of the group G is equal to h, the order of its commu­
tator subgroup K, it follows directly that K must be in the 
central of 6? since none of its operators could have h conjugates 
under 6?. To prove that K must be a prime power group it 
is only necessary to note that if s is any non-invariant operator 
of G then the operators of G which are commutative with s 
constitute an invariant subgroup of index k under G, and the 
corresponding quotient group is simply isomorphic with K 
since s transforms the operators of G into themselves multi­
plied by the various operators of K. 

If the order of K is not of the form pm, p being a prime 
number, let q and p be two different prime divisors of k. To 
an operator of order q in the given quotient group there must 
correspond an operator of order q& in G. As this operator 
would have k conjugates under G it would have to be trans­
formed under G into itself multiplied by an operator of order 
p contained in the central of G. This is evidently impossible 
since the order of this product could not be of the form qfi 

Hence we have established the following theorem : 
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THEOREM. If the number of operators in every set of non-
invariant conjugates of a group is equal to the order of the com­
mutator subgroup, then the order of this subgroup is of the form 
pm, p being a prime number. 

From the preceding theorem it results directly that G is 
the direct product of an abelian group and a non-abelian 
group whose order is of the form pm. I t is easy to prove that 
K must be of type (1, 1, 1, • • •)• If this were not the case the 
operator s of G which was defined above would transform an 
operator t± into itself multiplied by an operator of order pa 

while it would transform t2 into itself multiplied by an operator 
of order p a+1 whose pih power is the multiplier of h under s, 
p a+1 being an operator of highest order contained in K. Hence 
it may be assumed that t2

v = h. This is impossible since G 
would also have to contain an operator which would transform 
t\ into itself multiplied by an operator of order p a+1 . This 
proves also incidentally that the p\h power of every operator 
of G is found in the central of G. 

In the special case when k = p it is easy to prove that the 
order of the central quotient group of the Sylow group P of 
order pm would have for its order an even power of p. In 
fact, all the operators which are commutative with a non-
invariant operator s± of P constitute a subgroup of index p. 
If £2 is any operator in P which is not commutative with $i, 
then the cross-cut of the subgroups composed of all the 
operators which are commutative with Si and s2 respectively 
will be of index p2 under P . This cross-cut includes the 
central of P and if it includes other operators we may find a 
subgroup of index p2 contained in it and involving the central 
of P . As this process may be continued until we arrive at 
the central the theorem in question has been proved.* 
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* Cf. J. W. A. Young, AMERICAN JOURNAL, vol. 15 (1893), p . 171. 


