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TOTAL GEODESIC CURVATURE AND 
GEODESIC TORSION* 

BY J . K. WHITTEMORE 

In a paper on the gyroscope, presented to this Society 
April 23, 1921, Professor W. F. Osgood introduced the notion 
of the "bending" of a spherical curve. The "bending" is 
defined as the rate of turning, per unit length of arc of the 
curve, of the plane determined by the tangent to the curve 
and the normal to the surface. I t is the purpose of this note 
to show that the bending of a curve on any surface is equal to 

where pg and rg are the radii of geodesic curvature and geodesic 
torsion respectively. An expression, believed to be new, for 
the geodesic torsion of any curve of the surface is also derived. 
Since the rate of turning of the principal normal of a curve, 

where p and r are the radii of curvature and torsion respectively, 
is called the total curvature of a curve,f it seems appropriate 
to replace the term "bending" by "total geodesic curvature." 

Let r be any curve of a surface S and P be any point of T ; 
let cô be the angle measured from the positive direction of the 
principal normal to T at P to the positive direction of the 
normal to S at P , the angle being measured toward the positive 
binormal; let the direction cosines of the positive direction 
of the normal to S be X, Y, Z, and those of the positive directions 
of principal normal and binormal be respectively l, m, n and 
A, ix, v. Then the direction cosines of the normal to the plane 
of the tangent to Y and the normal to S are 

* Presented to the Society, October 29, 1921. 
t ENCYCLOPÉDIE DER MATHEMATISCHEN WISSENSCHAFTEN, I I I , 3, 1> 

p. 82. 
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A = I sin cö — X cos cô, 
B = m sin cö — JU cos cö, 
C = n sin tö — z> cos co, 

and the total geodesic curvature, g, is given by 

2 _ ^fdA\2_ sin2 co / l d c o \ 2 _ 1 1 

where 5 is the arc of I \ The third member of the preceding 
equation is obtained by differentiating the values given for 
A, B, C and using the Frenet-Serret formulas.* 

I t is of interest to note the value of the total geodesic 
curvature for certain special curves of a surface. 1. The total 
geodesic curvature is numerically equal to the geodesic curva­
ture when the geodesic torsion vanishes, that is, when T is 
tangent at P to a line of curvature of S; this occurs at all 
points of r when and only when T is a line of curvature; it 
is true in particular for all spherical curves, the case considered 
by Professor Osgood. 2. The total geodesic curvature is 
numerically equal to the geodesic torsion when the geodesic 
curvature vanishes, that is, when T osculates a geodesic line 
at P ; this occurs a t all points of V when and only when T is 
a geodesic line; for such a line total geodesic curvature, 
geodesic torsion and torsion are numerically equal. The total 
geodesic curvature vanishes for all points of a geodesic line of 
curvature, which is necessarily a plane curve. 3. If T is an 
asymptotic line, the total geodesic curvature is at every point 
equal to the total curvature This fact is evident from the 
definitions of the two curvatures, and appears also from the 
equations, true for any asymptotic line, 

P = dz pg> T = Tg. 

There exist, however, on every surface curves other than the 
asymptotic lines such that at every point the total geodesic 
curvature is equal to the total curvature. Along such a curve 
the following equation must be satisfied : 

/ dû Y __ 2 dô) _ cos2 cö 
\ds J rds p2 

* See Eisenhart, Differential Geometry, pp. 17, 132, 138. 
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The asymptotic lines are given by the solution, cos œ = 0. 
For a given surface with given parameters, u, v, this equation 
becomes a differential equation of the third order for v as a 
function of u. If on the other hand any curve is given, a 
"surface band," that is, the curve and the normal to a surface 
at each point of the curve, is determined by a solution ü of 
this equation such that the given curve has the required 
property on any surface containing the band. If, in particular, 
the given curve is plane, the equation gives for the surface 
band cos œ = sech <p where <p is the angle made by the tan­
gent to the given plane curve with any fixed direction in the 
plane. 

We now prove that the geodesic torsion of any curve T of 
S is given by 

1 . ^da­
ds — sin 

where a is the arc of the curve corresponding to T in the 
spherical representation of S and 0 is the angle measured 
from the positive direction of V to the positive direction 
of the corresponding curve in the spherical representation, 
the angle being measured in the direction of rotation from the 
positive direction of the parametric curve (¥), or v constant, 
on S to the positive direction of (u). 

The direction cosines of the positive directions on V and 
on its spherical representation are respectively dxfds, dyjds, 
dz/ds and dXjda, dY/da, dZ/da. We find 

\dx dy dz I 
ds ds ds 
dX dY dZ\ = sinfl. 
da da da 
X Y Z\ 

Suppose the parametric system to be such that T is a curve 
(v) and that the system is orthogonal so that F = 0. We 
may then evaluate the determinant above, writing 

ds -yj^du da da -yj^du 
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using the formula given by Eisenhart* for dX/du, replacing 
— D'\B. by 1/TÇ, and noting that 

dx dy dz 
du du du 
dx dy cte | = H. 
dv dv dv 
X Y Z 

We find 
1 ds . n 
— j - = s m Ö, 
Ta da 

so proving the formula given. A somewhat simpler proof 
can be given for the numerical correctness of this result, that 
is, if the question of sign is disregarded. Certain properties 
of geodesic torsion appear clearly from the preceding formula. 
1. If r is tangent to a line of curvature of S at P , the tangents 
to r at P and to the spherical representation of V at the 
corresponding point are parallel, and 6 = \\rg = 0. 2. If T is 
tangent to an asymptotic line of S at P , we have 6 = db w/2 
and \\TQ = db dxr/ds. Since in the direction of an asymptotic 
line da2/ds2 = — K, where K is the total curvature of S, we 
have Enneper's theorem :f in the direction of an asymptotic 
line ljrg = zb V— K. 3. Since the spherical representation of 
a minimal surface is conformai, J \\rg = db V— K sin 2\p for 
any curve on such a surface, where \f/ is the angle of the tangent 
to the curve and the tangent to either line of curvature. If 
a minimal surface is applicable to a surface of revolution, 
every geodesic line of the minimal surface, which in the 
application corresponds to a meridian of the surface of revolu­
tion, cuts all the lines of curvature of one family at the same 
angle.§ For such a geodesic the torsion varies as V— K since 
\f/ is constant. 

Y A L E UNIVERSITY 

* Loc. cit., pp. 116, 138. 
t Eisenhart, loc. cit., pp. 140, 141. 
t Loc. cit., p . 251. 
§ This result was first given by E. Bour, Théorie de la déformation des 

surfaces, JOURNAL DE L'ÉCOLE POLYTECHNIQUE, vol. 39 (1862). 


