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CONVEX DISTRIBUTION OF THE ZEROS OF 
STURM-LIOUVILLE FUNCTIONS* 

BY EINAK HILLE 

Introduction. In an investigation concerning the distribu­
tion in the complex plane of the zeros of the functions of the 
parabolic cylinder the author of the present note was con­
fronted with the following problem. Given a linear differential 
equation of the second order of the type 
(1) w" + G(z)w = 0, 
where 6? (2) is analytic in the region under consideration, how 
does the nature of the argument of G(z) affect the distribution of 
the zeros of a given solution w(z) of (1)? 

We have some results which throw light on this general 
question. Roughly speaking, one may say that the argument 
of G(z) affects the orientation of the zeros in the complex plane, 
whereas the absolute value of G(z) seems to affect the density 
of the distribution. As the problem and the results obtained 
seem to have some intrinsic value aside from their bearing on 
the special problem, mentioned above, their separate publica­
tion may perhaps be justified. 

1. Bounded Argument of G(z). Let us consider a convex 
region B in the s-plane in which G{z) is single-valued and 
analytic and in which, furthermore, the argument of G(z) is 
restricted as follows: 
(2) #1 ^ arg G(z) ^ #2 (ir > #1 - #2 ^ 0). 

Let us construct a set of polygonal lines (p) in B in the 
following manner. Take any point P0 in the interior of B. 
Draw from this point all rays which form an angle 0FQ with the 
positive real axis such that 
(3) - i*i < ePo < - j#2. 
Take a second point Pi in B on any of these rays and use it 
as vertex for a second set of rays with the same limitation 
on the slope-angle 6Pl as on 0Po. Then choose a third point 
P2 and so on. The polygonal line so obtained forms an ele-

* Presented to the Society, Dec. 29, 1921. 
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ment p of our set (p). Repeat this construction for all 
interior points P 0 in B and for every possible choice of points 
Pi, P2, • • •, Pn, - - • on the resulting rays. The set of all 
these polygonal lines is the set (p). By the construction we 
define a positive direction on the line p, namely from Pn to 
P n + i for all values of n; we always assume the line to be 
traced in this direction. Now take a solution w(z) of (1) and 
put W(z) = w{z) (dw/dz). Mark the zeros of W(z) in B. Then 
we have the following theorem. 

THEOREM I. There is at least one polygonal line p0 in the set 
(p), defined above, which joins all the zeros of W(z) in B. The 
line po is unique when and only when G(z) = const. 

The theorem is equivalent to the following one. 
THEOREM II . If a and b are two zeros of W(z) in B, then 

— | # i + kw ^ arg (a — b) ^ — §#2 + kir, 
where k is 0 or 1. 

We have proved theorem II in another place* but the proof 
will be repeated for the benefit of the reader. Multiply 
equation (1) by w, the conjugate of w, and integrate between 
a and 6. After an integration by parts we obtain 

(4) \ w-r- I — I —I dz + I \w\2G(z)dz = 0. 
L dz Ja J a \dz\ Ja 

But W(z) = 0 for z = a and b, hence the integrated part 
disappears. Putting z = a + ré® where d = arg (6 — a), we 
get 

(5) e2* H \w\2G{z)dr = P l ^ T d r , ( f l = |& - a | ) . 

Thus, denoting the integral on the left-hand side in (5) by 
9{a, b) we observe that e2ie9(a, b) is a real positive number. 

Hence 
(6) 20 = 2kw - arg 3(a, b). 
But by (2) we conclude that #1 ^ arg 9(a, b) ^ û2, so that 
(7) kur - | ^ i ^ (9 ^ &TT - §#2, 
wheie the signs of equality hold only when #1 = #2, which 
cleaily corresponds to G(z) = const., when all the zeros lie on 
the same straight line. 

* On the zeros of Sturm-Liouville functions, theorem X I , ARKIV FOR 
MATEMATIK, ASTRONOMI OCH FYSIK, vol. 16, nr. 17, 1921. 
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2. Monotonie Variation of arg G(z). The line p0 is not 
unique but the sub-set (p0) of lines in (p) which pass through 
all the zeros of W(z) in B meet these points in one and the 
same order. Suppose we enumerate the zeros a\, a2, • • •, an 

in the order in which they occur on any of these lines. Let 
mo stand for the polygonal line in (p0) for which P„ = av+i 
0 = 0, 1, • • -, n — l ) . We are going to show that if the 
argument of G(z) varies in a monotonie manner along all 
lines of (p), thentD-0 together with the line (an, a{) encloses a 
convex polygon. This is more precisely stated as follows. 

THEOREM I I I . If arg G(z) is never increasing (never de­
creasing) when z traces any line of (p), then the angles arg 
(<V}_i — a„) form a never decreasing (never increasing) set. 

To fix our ideas, let us assume arg G(z) never increasing and 
put arg (<Vf.i — av) = d„. Then we have to prove that 
Qv ^ 0r\-i, for all values of v. By (6) we have 
/8N f 2 ^ = — arg 3{av , a^i), 

1 20H_I = - arg 3(a^lf a ^ ) . 
But arg G(z) is never increasing along-ar0, so that 
,Q. J arg G(a,+i) ^ arg <?(a„ , av+1) m arg G(a„), 

1 arg G(arvù ^ arg $(au+h a^2) ~ arg G(av+i). 
In view of (8) and (9) we conclude that 6V ̂  ö^+i as asserted. 

3. A Zero-free Region. Formula (5) suggests a still more 
general point of view on the problem in hand. At each point 
z of the plane where G(z) is analytic and =t= 0 there is a critical 
direction Bz determined by 
(10) 0, = - i arg G(a). 
z and 02 define a lineal element pz. These elements envelop 
a set of curves & which are integral curves of the differential 
equation 

(il) 3fm[Vö )̂(fe] = 0. 
In fact, from (10) it follows that at the point z 

(12) £ arg G(z) + arg da s 0 (mod TT), 

which is equivalent to (11). 
Let us take a point zi where G(z) is analytic and 4= 0. 

Mark the singular points ah a2, • • •, an, • • • of G(z) and join 
them with oo by means of straight lines which produced back-
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wards pass through z\. These lines Llf L2l • • •, Ln, • • • we 
consider as cuts in the plane. 

Take a pencil of rays l(<p, z{) with z = 21 as vertex. Let us 
follow a special ray l(<p0, zi) from 21. Note the lineal elements 
along I; if <p0 =f= 0ZV we proceed until we arrive at a point 
z2 = z2(<p0) where 6Z2 = <p0 (mod 7r) ; and the remainder of the ray 
we leave out. From the rays that pass through the singular 
points we leave out at least the lines Lv. The rays <po = 6H 

(mod 7r) we follow until we meet a second point z2 for which 
0*2 s ^o- The points z2(<p) form a certain curve which may lie 
partly at infinity and in general also has isolated discontinui­
ties. The finite points, except possibly the singular points av, 
form part of an analytic curve %(zi) which is the locus of the 
points of tangency of the pencil of straight lines through 
z = zi with the family of curves ©. From the differential 
equation of the pencil and of the family, namely, 

m ) f3ta[Vöfo)efa] = 0 > 
V ; I 3ta[efe/(a - *i)l = 0, 

we conclude that the equation of X(z{) is 

(14) 3tot[VG(2J ( * - * i ) ] = 0. 

If z2(<p) is discontinuous at <p = <pi,we assume the existence 
of z2~~ = Km 22(^1 — e) and of z2

+ — lim z2(<pi + e), neither of 
which is required to be finite. If we add the part of the ray 
l(<Pi) from z2~ to z2

+, we make the boundary curve continuous 
at <p = <pi. If z2(<pv) = a„ one of the singular points, we have 
to complete z2(<p) by parts of the edges of the cut Lv, namely, 
from av to z2~~ and from av to z2

+ respectively. What we add 
from the cuts we consider as inaccessible parts of the boundary, 
whereas the additions from the interior of the cut plane as 
well as the part of X(zi) which belongs to z2(<p) are regarded 
as accessible. 

The points on l(<p, z) from 21 to z2(<p) (0 S§ <p < 2w) form 
a region ^(21) which we shall call the star of 21.* We count 
the accessible part of the boundary as belonging to the star; 

* In a paper Oscillation theorems in the complex domain, to appear in the 
TRANSACTIONS OF THIS SOCIETY, we have given a different definition of the 
star. The definition given above is simpler and slightly more general. 
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the inaccessible points on the cuts and the vertex z = z\ we 
do not include in *(2i). Then we have 

THEOREM IV. If W(z) = w(z)(dw/dz), where w(z) is a solu­
tion of (1), and if W(z{) = 0, then W(z) does not vanish in the 
star of zi. 

The proof is obvious. Suppose z$ is a point in *(zi). 
Then 

(15) (Jfc + 1)TT > 2 arg (a - zi) + arg 6(z) > far, (fc=0 or 1), 

for all values of z on the segment (21, 23) and where h only 
depends upon z3. This shows that the integral on the left-
hand side in formula (5) with ri = |s3 — z\\ cannot be 
positive, which is necessary if z — Zz is to be a zero of W{z). 

If arg G(z) satisfies the restriction (2) in a convex region B> 

then 6Z satisfies the inequality (3) ; that is to say, the line part 
of the lineal element pz is a line in (p) as far as the neighbor­
hood of z is concerned. If the variation of the argument of 
G(z) along lines in (p) is monotonie, then the parts of the 
curves @ which lie in B are all curved in the same way. In 
fact the curvature of a curve ©0 is found to be 

where 0 = arg G(z) and s is the length of arc along ©0.* 
The curve ©0 lies to the right of the positive tangent if 
(d^/cfo) > 0, but to the left if (dcj>/ds) < 0. 

Assume, to fix our ideas, (defr/ds) < 0. Then the part of 
X(zi) that lies in B lies to the left of pZl except at z = 21, which 
is the point of tangency. X(zi) is convex with regard to pZl 

and cuts the boundary of B in two points only. The points 
on and to the right of pZl in B belong to #(si), and likewise 
those on and to the left of £(zi). 

I t is worth noticing that the form of the star depends only 
upon the argument of G(z). Thus if we replace 6?(2) by 
k2G(z), where k is real, we get exactly the same configuration. 
The frequency of the oscillation is of course changed by such 
a replacement. 

HARVARD UNIVERSITY 

* The curvature is by definition ddz/ds. 


