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tain exactly 7 subgroups of order 9. Its order would therefore 
be 63, 126, or 252. This is impossible as each of these groups 
would involve only one subgroup of order 7 since each of its 
subgroups of order 7 would be transformed into itself by at 
least 21 substitutions. 

I t remains only to consider the case when Gi would contain 
a substitution of order 3 and of degree 60 without involving 
such a substitution of degree 63. The order of the group 
formed by all the substitutions of G which would be com­
mutative with this substitution of order 3 would be 90. This 
group of order 90 would transform its ten subgroups of order 9 
according to a transitive group of order 30 and of degree 10. 
Since this transitive group does not exist,* we have arrived 
at nothing but contradictions by assuming the existence of a 
second simple group of order 71/2 and hence such a group is 
actually proved to be non-existent. 
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A THEOREM OF OSCILLATION 
BY W. E. MILNE 

In an investigation of the oscillations of aerial bombs a 
need was found for the following proposition. Both the 
theorem and its proof are modelled after a similar theorem and 
proof by Osgood.f 

THEOREM. Let <p(f) be positive, continuous, monotonically 
increasing, and bounded in the interval T ^ t < oo, and let m 
and M be two positive constants such that m < <p(t) < M for 
t > T. Let f(y) be an odd, monotonically increasing function, 
satisfying the Lipschitz condition 

\f(yi)-f(y2)\<K\yi-y2\, K>o, 

in an interval — a^ày^à + a, a>0. Let y be a solution of 
the differential equation 

(i) % + <p(t)f(y) = o 
* Cf. F . N . Cole, QUARTERLY JOURNAL, vol. 27 (1895), p . 40. 
t This BULLETIN, vol. 25 (1919), pp. 216-221. 
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subject to the conditions 

(2) j | = 0, y = yu \Vl\ < a, f(yi) * 0, wferc t=h> T. 

Then y oscillates an infinite number of times in the interval 
ti < t < + °° and the amplitudes decrease monotonically but 
do not approach zero. 

Proof: Let us extend* the definition oîf(y) by the formulas 

ƒ(y) = ƒ0) , when y > a, 
f(y) = ƒ ( - a)> w n e n y < - a. 

The function so extended satisfies the Lipschitz condition. 
With the hypotheses thus extended, there existsf a unique 

function y(t), continuous together with its first two derivatives, 
which satisfies (1) and (2) in the interval ti ^ t < <x>. Now 
consider the case in which yi is positive. Then, at h, d2y/dt2 

is negative and remains negative as long as y is positive. Since 
dy r'd2y _ 

we see that v is negative as long as y is positive. Therefore 
the graph of y(t) as a function of t is concave downward with 
negative slope to the right of th and therefore must cut the 
axis at a finite point t\ > t\. Let vi be the corresponding 
value of v. Now multiply (1) by 2dy and integrate, obtaining 

(3) w v2 = - 2fy
J
i<p(t)f(y)dy. 

At £i' this becomes 
*!* = 2p0

1
(p(t)f(y)dy. 

Since in the interval / i ë ( S £/ we have by hypothesis 
<p(t{) Si <p(0 = <p(<i')> it follows that 

»i2 Si 2<p(t1')fo
vi(y)dy, 

n2 S 2<p(t1)fo
vi(y)dy. 

Now let 

* This extension is made for convenience in establishing the existence 
of the solution. Actually the definition of f(y) outside the interval 
— a :== y ^ a is immaterial. 

t Bliss, PRINCETON COLLOQUIUM, p. 93. 
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Then F (y) is even and continuous for | y \ < a, is monotonically 
increasing in the interval 0 < y < a, and vanishes at the 
origin. With this notation the above inequalities become 

K S 2<p(jt1')F(3fl), 
( 4 ) W^2<p(t1)F(y1). 

At t\ v is negative; hence, immediately to the right of h' 
y is negative, and therefore d2y/dt2 is positive. Moreover as 
long as v is negative, d2y/dt2 is monotonically increasing, as 
equation (1) shows. Then since 

v = Vi + L-idt> 
it is clear that v must vanish for a finite value of t, t = t2 > h'. 
Let the corresponding value of y be y2» Now from (3) 

v,2 = 2£<p(t)f(y)dy, 
whence as in the preceding case 

v,2 ^ 2<p(t2)F(y2), 
( 5 ) W^2<p(hf)F{y2). 
From (4) and (5) we get 

F{Vl) ^F(y2), or \yx\ S |y2 |, 
<p{h)F(yi) ^ <p(t2)F(y2). 

A similar argument leads to the same results when yx is negative. 
Starting now with the conditions dy/dt = 0, y = 2/2, when 

2 = t2, we may repeat the entire argument and obtain 
12/21 S 12/31, <p(t2)F(y2) ^ <p(U)F(yz), and in general 

(6) |yw| s |y«+i|> 
and 
(7) <p(tn)F(yn) S ^ ( W i ) f ( R i ) , 
where tfn is the nth value of £ (beginning with £i) for which 
dy/dt = 0, and yn is the corresponding value of y. 

The quantities yn are the amplitudes of the successive 
oscillations. Hence (6) proves that the amplitudes decrease 
monotonically. From (7), together with the hypotheses re­
garding <p(t), it may be shown that F(yn) = (m/M)F(yi), 
which proves that the amplitudes do not approach zero. 
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