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REPORT ON 
TOPICS IN THE THEORY OF DIVERGENT SERIES* 

BY W. A. HURWITZ 

1. Introduction. It is with some reluctance that I have 
acceded to the request of the programme committee to 
address the Society on the present status of problems concern­
ing divergent series, since three admirable expository treat­
ments of this field have already been given to the Society and 
published in the BULLETIN, by W. B. Ford,f R. D. Car-
michael,J and C. N. Moore. § In particular Professor 
Carmichael has so closely followed the trend which my own 
thoughts have taken (except that I should not have presented 
them so elegantly) as to make it difficult for me to give an 
adequate account without a good deal of repetition. At any 
rate I shall take advantage of his paper in order to plunge 
in médias res today, and also to omit references to original 
sources unless these seem especially desirable. 

If we have the symbol 

(1) Swn = UX + U2 + UZ + • • -, 
we define 
(2) Xn = Ui + U2 + • • • + Un, 
so that 
(3) U\ = Xi; Un = Xn— Xn-l, ft > 1. 
In case 

lim xn 

exists, we say that the series Swn or the sequence (xn) is 
convergent, the limit of the sequence being the value or sum 
of the series. The importane of this concception lies in the 
fact that many formal transformations carried out on infinite 
series as if they are finite sums can be proved correct. In­
stances arose early in the study of series, however, in which 

* Presented before the Society at the Symposium held in New York 
City, April 23, 1921. 

t This BULLETIN, vol. 25 (1918-19), p. 1. 
Î Ibid., vol. 25 (1918-19), p. 97. 
§ Ibid., vol. 25 (1918-19), p. 258. 
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such transformations, though assuredly not correct on the 
basis of existing theory, nevertheless led in special cases to 
correct results.* The attempt to justify such results led 
naturally to generalizations of the notion of the value of a 
series. 

I shall denote methods of definition of value by capital 
letters A, B, • • • ; I shall express the fact that a series or se­
quence can be evaluated by a method A by saying that it 
is summable A; and the resulting value I shall denote by 
AL(xn). 

2. Linearity and Regularity. One of the important prop­
erties of definitions is that of linearity. A definition A is 
said to be linear if 

AL(xn + xn') = AL(xn) + Al(xn') 
whenever AL(xn) and AL(xn') exist, and 

AL(cxn) = cAL(xn) 
whenever AL(xn) exists. 

I have stated this property first of all, because it is the only 
one which is satisfied, so far as I know, by every definition 
which has ever been proposed as practically useful. Of even 
wider importance of course, although not satisfied by every 
useful definition, is the following. A definition A is said to 
be regular in case it evaluates every convergent sequence, 
giving it the value to which it converges; that is, in case 

lim xn = I 

implies AL(xn) = L 
Nearly every definition that has been proposed can be 

thrown into the following form: 
Let a point set T be given in space of any number of dimen­

sions, real or complex, having a limit point U (actual or sym­
bolic f) not belonging to T9 and let the functions ak(t) [k = 1, 
2, • • •] be defined in T; then if the sequence (xn) is such that 

(G) y(t) = £ ak(f)xk 
A==I 

* It is only necessary to allude to the interesting history of the series 
1 - 1 + 1 - 1 + . . . . 

t I.e., having one or more of its coordinates infinite. 
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converges for each tin T and if 

lim y(t) = /, 

the sequence (xn) is said to be summable G, and GL(xn) = I-
This definition could of course be expressed in terms of un 

instead of xn* 
An important special case is that in which T consists of the 

positive real integers and in which a,k(t), which may then be 
written ank, is zero for h > n. In this case the requirement 
of convergence of G is met automatically, and we may say: 

The sequence (xn) is summable ö', and G'L(xn) = I provided 

lim yn = I, 
w-*oo 

where 
n 

(G') yn = ]C ankXk. 

An especial convenience in dealing with this case is that the 
transformation G' may be treated by the usual algebraic 
machinery of linear transformations, since the first n y's 
depend only on the first n x's. We may speak of sums, 
numerical multiples, products, and powers of G'. The defini­
tion of ordinary convergence is one such case; it is given by 
the transformation 
( /) yn = Xn-

Any transformation of the form G' will have an inverse 
provided ann 4= 0 for every n. 

For both G and G' it is obvious that the condition of linearity 
is satisfied. Sufficient conditions for the regularity of G were 
given by Silverman;* they were proved to be also necessary 
(even in a slightly more general case) by Toeplitz:f 

For the definition G' to be regular it is necessary and sufficient 
that 
(G'l) for each h, lim ank = 0; 

n~*oo 

n 

(G'2) for all n, ]C |#nfc| is bounded; 
k—i 

*Ph.D. thesis, Missouri, 1910; UNIVERSITY OF MISSOURI STUDIES, 
MATHEMATICS SERIES, vol. 1, no. 1 (1913). 

t PRACE MATEMATYCZNO-FIZYCZNE, vol. 22 (1911), p. 113. 
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(G'3) lim £ ank = 1. 

The corresponding theorem for the more general definition 
G is due to Carmichael* and Hildebrandt;t it has recently 
been restated by J. Schur:$ 

For the definition G to be regular it is necessary and sufficient 
that 
(Gl) for each k, lim ak(t) = 0; 

oo 

(G2)for each t in T, ^ |a*(0 I converges, 
oo 

and for all t in T, ]T) |a*(0| is bounded; 

(03) lim f; ak(t) = 1. 

It should be noted that if we restrict all quantities appear­
ing in these theorems to be real, the theorems remain true, 
not only as regards sufficiency, but also as regards necessity. 

3. Definitions of Summability. I shall now give examples 
of definitions, illustrating each by application to the series 

(4) l + x+x2+xz+ ••.. 

For this series un = a*-*1; hence 

1 — xn 

(5) xn = 1 _ x , x # 1. 

As the definitions are all to satisfy the requirement of linearity, 
we can prove that AL(xn) = 1/(1 — x) by showing that 
AL(xn) = 0. We shall therefore consider instead of (5) 

(6) xn = xn. 

The usual definition of limit gives the desired result when and 
only when \x\ < 1. Holder employed the transformation 

(M) yn = 

* Loc. cit., p. 118. 
t Abstract, this BULLETIN, vol. 24 (1917-18), p. 429. Compare also 

the statement made by Carmichael in the preceding reference. 
% JOUEN AL FÜR MATHEMATIK, vol. 151 (1920), p. 82. 
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lim 
n—*-OG 

Here, in the notation of G', ank = l/w. This definition is 
obviously regular. It constitutes the first Holder mean. The 
further Holder means are conveniently described as algebraic 
powers of M: M2, M3, 

In order to apply M to (6), we have xn = xn, and for x =# 1, 

_ x + x2 + * • • + an __ x(l — an) 
^n ~ n ~~ n(l - a) 

# a; #n 

"" n(l — a) 1 — a; n 

The first term approaches zero as n becomes infinite, and 

a |̂ J 0, |g| S 1, 
n I ~ too, |*| > 1; 

hence (4) is summable M to the value 1/(1 — x) for \x\ ^ 1 , 
a # l , and is not summable Jf for \x\ > 1. I shall defer 
until later the consideration of the behavior f or x = 1.* 

Hence M evaluates (4) to the value which would be ex­
pected, not only at points inside the circle of convergence, 
but also at all points on the circle other than x = 1; and at 
no points outside the circle. It can readily be shown that 
for any value of r, Mr accomplishes no more for the series (4). 

Cesàro gave the formulas: 

tn\ - nXl + (n """ ^ 2 + ' * ' + #n 
{Lt) Vn~ n ( n + l ) / 2 ; 

p _ n • - - (n + r — 2) xi + h 1 - • • (r — l)a?n 

^ ^ "" n(n + 1) • • - (» + r - l)/r 

For every positive integer r, Cr is regular. 
Extensions of Cesàro's method were given by Knopp and 

Chapman. Chapman's formula is 

, / n - V ( n - l ) T ( n + f t) 
{ r) Vn~ ai (n - «0 !r(n + r) **' 
which reduces to Cesàro's form when r is a positive integer, 

•See §6. 
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but has a meaning when r is fractional, irrational or even 
complex, provided r is not a negative integer or zero. In a 
limiting sense, it may be said to have a meaning even for 
r = 0: Co = J. Applying C2, for illustration, to (6), we have 
xn = xn, for a? 4s 1, 

n# + {n —• 1)#2 + • • • + xn 

Vn = 

Q-*)2*/» = 

rc(rc + l)/2 
na? — (n + 1)#2 + #n+2 

ra(rc + l)/2 
2x 2a? , 2tta2 /a£\ 

-- + ~ ' 1 VnV n + 1 n n + 

Hence as before C2L(a:n) = 0 f or \x\ â 1, a 4= 1; C2L(xn) 
does not exist if | # | > 1. The same result can be obtained for 
Cr, in the same fashion if r is a positive integer, and by other 
considerations in any case when R(r) > 0. 

It is seen that no definition of Holder or Cesàro serves to 
evaluate (4) outside its region of convergence. A convenient 
form of definition is given by the exponential mean:* 

,TP, v- ( n - l ) I ( r - l ) n ~ * 
(Er) yn = £ (n-*)!(*- 1)! f-* ** 
The successive coefficients are the terms of the binomial 
expansion of [(1 — 1/r) + l/r]""""1. The definition is regular 
if and only if r is real and g 1. It is readily seen that JEi = J. 
The name "exponential mean" is suggested because of the 
interesting algebraic property ErE8 = Er8-

Applying Er to (6), we have 

= f» (w - 1) I (r - Dn~fc * 
Vn ti (n - fc) ! (fc - 1) I r^ 1 X 

-b-\+T-
Thus î/n will approach zero if and only if 

' - + - < i , 
r r\ 

* This formula was given, in slightly different notation, by Hausdorff, 
MATHEMATISCHE ZEITSCHRIFT, vol. 9 (1921), p. 86; his work was unknown 
to me during the preparation of this paper for presentation. 
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y 

that is, 
\x — (1 — r)\ < r. 

The region of evaluation is therefore the interior of a circle 
through x = 1, having its center at x = 1 — r. For any 
r > 1, this region includes points outside the circle of con­
vergence. For large enough r any point x will be obtained 
which satisfies the condition R(x) < 1. 

A variety of definitions were given by M. Riesz. Let (Xn) 
be any sequence of positive numbers increasing and becoming 
infinite. For one form of the Riesz mean of type (X) and 
order r, we write (in terms of un rather than xn) 

(R\, r) yn = Z) ( 1 - ^ ) uk. 
k=l \ An / 

For the case Xn = n, r = 1, this has the form 

„ = Ml (! _I) + „, (i -?)+••• +^(1-^-1) 
= - ( « ! + • • • + av-i), 

and is essentially the same as M. For any (Xn), R\, o = I. 
For all cases in which r ^ 0, JBX, r is regular. 

As regards the application of R\, r to (6), it is clear that for 
Xn = n, Rx, i gives a value at points inside and on the boun­
dary of the circle of convergence, but nowhere outside. It 
can be proved that with any choice of (Xn) and r, evaluation 
of (4) outside the circle of convergence is impossible. 

The definitions thus far considered have all been of type G'. 
We consider next some which are of the more general type G. 
A definition given by Euler can readily be put in this form. 
Euler argued that as the series 1 — 1 + 1 — 1 + • • • is the 
special case, for t = 1, of the series 1 — t + t2 — tz + • • -, 
which f or t < 1 has the value 1/(1 + f), therefore the former 
series should have the value J. This amounts to writing, 
in the case of a given series u\ + u^ + u% + • • •, 

y(t) = ui + u2t + uzt
2 + • • -, 

and defining the value as lim,—! y(f). This definition may be 
called Euler's power series method. Thrown into a form 
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involving xn instead of un, it will read 

(P) 2/n = ( 1 - O E ^ 1 , 

so that in the notation of G, a,k(t) = (1 — f)tk~l. We must of 
course require that the series 

k-\ k=l 

converge for \t\ < 1. 
We may choose to let t approach 1 along real values or 

along some other point set T in the circle \t\ < 1, having 1 
as a limit point. In the first case, the fact that P is regular 
is stated by a well known theorem due to Abel: If ^ajct

Jc"1 

converges, — 1 < x S 1, then it is continuous even att = 1. 
Abel's theorem was extended by Stolz and Pringsheim to the 

case of other point sets T. The conditions shown by them 
to be sufficient are easily shown by the theorem of Carmichael 
and Hildebrandt to be also necessary: P is regular if Tlies 
within the angle formed by some pair of chords through t = 1. 

P evaluates (4) only at points other than x = 1, within and 
on the boundary of the circle of convergence. It is further­
more obvious that P can never evaluate any power series at 
a point outside its circle of convergence, and that it is therefore 
of little value for the problem of analytic extension. 

Several elegant methods of evaluation were given by Borel. 
I shall state some of them in a more general form due to 
Sannia.* In terms of a given sequence (xn), write 

00 £&—1 

and suppose that this power series converges for all points 
of the plane. Call 

ro)(o = m, 

* RENDICONTI DI PALERMO, vol. 42 (1917), p. 303. 
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Define 
(Br) y(t) = *-'è<r-»(f); 

then lim^oo^OO is. to be the generalized limit of (xn). The 
cases commonly discussed are B\, known as the Borel mean 
definition, and Bo, known as the Borel integral definition. 

In the usual form of treatment T is taken as the positive 
real axis, and it is shown that Br is always regular. It seems 
not to have been noted that we may allow T to be a more 
general point set of the complex plane possessing points of 
arbitrarily great positive abscissas, and take the limit as 
R(t) becomes infinite. It can readily be proved that for the 
Borel-Sannia definition Br to be regular it is necessary and 
sufficient that all points of T of sufficiently great positive 
abscissas lie within some parabola having its axis along the 
real axis and opening to the right; that is, if t = r + i<r, <r2/r 
shall be bounded. 

Let us apply these results to (6). We have 

£(0>(0 = xeF', £(1)(*) = a2**', £(2)(*) = x*<?\ • • • ; 

$<-»(*) = #i _ 1, £<-*>(<) B ^ - L < , 

Hence 
Bu y(t) = xefr-**', B0: y(t) = «<*-»' - <r'; 

B2: y(t) = zV*-"'; 5_i: y{t) = - e^»1 - - e~l - ie"4; 

Taking for T the positive real axis, we see that Br evaluates 
(6) to zero for R(#) < 1, and for no other values. By appro­
priate choice of other sets for T, we can secure the evaluation 
for any point of the line R(x) = 1 except x = 1. 

Borel also gave a definition which he termed " absolute 
summability." It is not regular; it does, however, correctly 
evaluate all absolutely convergent series. Absolute summa­
bility has been considered important since it permitted various 
operations on series which were not justified by mere summa­
bility JBi or Bo; but with Sannia's form of the Borel definitions, 
absolute summability becomes relatively unimportant. 
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An extremely powerful definition is due to Le Roy. Write 

taking for T the real axis near t = 1; and U = 1. This 
definition can be shown to be regular. It evaluates (4) for all 
points of the complex plane except x real, S 1. 

The Riesz means have been extended by Hardy and Riesz 
so as to bring them under the form G. Taking the sequence 
(Xn) restricted as before, write 

and let T be the set of positive real numbers, U = °°. R\,r 
in this form is still regular for all r S 0. It does not evaluate 
(4) in any more extended region than did the form for i£x, r 
previously given. 

4. Relative Inclusiveness of Definitions) Equivalence. A 
definition, A, is said to include another, B, in case every 
sequence summable B is summable A to the same value. Two 
definitions are said to be equivalent if each includes the other; 
in this case each evaluates exactly the same sequences. 

If the definitions A, B, whether regular or not, are of type G', 
A includes B provided there exists a regular C such that A = CB. 
In case B possesses an inverse, this condition may be written in 
the form: AB~~l is regular; it is in this case necessary and 
sufficient.* 

If A, B, whether regular or not, are of type G', they are equiva­
lent provided there exist C, D, both regular, such that A = CB, 
B = DA. In case A, B possess inverses, this condition may 
be written in the form: AB~~X and BA"1 are regular; it is in this 
case necessary and sufficient.^ 

Certain cases fall under the criteria just given without any 
further investigation. For instance, since the Holder means 
satisfy the condition MrM* = Mr+8, and since Mr is always 
regular, it is clear that the Holder mean definition of any order 

* The second form of the condition is stated by Carmichael, loc. cit., p. 
112; it has usually been applied in this form. There are cases, however, 
in which the first form is useful. 

t Second form stated by Carmichael, loc. cit., p. 113. 
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includes that of any lower order. In a similar way the expo­
nential mean Er becomes more inclusive as r increases, since 
ErE8 = Er8 and Er is regular when r > 1. 

Other instances require more investigation, but every case 
I have examined in which definitions of type G' are concerned 
depends on the criterion I have stated. The Cesàro-Chapman 
mean Cr includes Cs if R(r) > R(s) > — 1. In particular, 
f or — 1 < R(r) < 0, Cr is included in I; thus every series 
summable Cr, — 1 < R(r) < 0, is convergent; and not all 
convergent series are summable Cr for a fixed r, - K R ( r ) < 0 , 

A question which has formed the starting point for a number 
of investigations on divergent series is the relationship of Mr 

and Cr for positive integral values of r. Knopp proved that 
for any such r, Cr includes Mr; Schnee and Ford showed that 
Mr and Cr are actually equivalent; a number of other proofs 
have been given. To cite an example of the opposite kind, 
Mr and E8 are distinctly overlapping definitions; neither in­
cludes the other, except in the trivial case M° = E\ = I. 

It is important to point out that the method of proof of 
relative inclusiveness given above can be applied at times even 
to the comparison of definitions of different types. For in­
stance, Er is of type G', a sequence-to-sequence transformation, 
while B i is of type (?, a sequence-to-function transforma­
tion. But it is easily proved that B\E~l = BiEur = EJ5i, 
where E is a function-to-function transformation: 

(E) y(t) = x(rt). 

Thus Bi will include Er provided EB\ is regular; and this will 
surely be true provided E is regular, Tvhere the latter statement 
must be understood to mean that the existence of l i m ^ ^ O 
is to imply the existence and equality of lim^^CO* But the 
regularity of E in the sense explained is obvious; thus J8i 
includes Er for every r > 0. 

Into similar form may be thrown Sannia's proof that Br 

includes B3 whenever r < s, and the familiar proof that 
Cr(r > 0) is included in P. On the other hand, of Mr and B\ 
neither includes the other; the same statement holds for B\ 
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and P. Note that no definition which evaluates a power 
series at a point outside its circle of convergence can include P. 

The results for the Riesz means are interesting. As in the 
case of the Cesàro means, JBX, r includes ÜX| s if r > s. We 
may even compare means derived from different sequences 
(Xn); thus, if [xn = log Xn, then RMt r includes R^ r. If 
Xn = n, JRX, r is equivalent to Cr for every r. In case Xn = en> 
jRx, r is always equivalent to I. 

5. Mutual Consistency. It has been seen that two defini­
tions may be regular and yet such that neither includes the 
other. In such cases it is manifestly of the highest impor­
tance to know that the two definitions will not give different 
values to any sequence which each one evaluates. The 
circumstance in question is illustrated by an example due to 
Silverman.* The definitions (of type 6?') : 

are both regular; but the sequence xn = (— l)n log n is evalu­
ated by the first to 0 and by the second to 1. 

We call two definitions mutually consistent^ if, whenever 
each of them evaluates a sequence, the two values are the 
same. A condition for mutual consistency can be stated as 
follows: 

Any two definitions are mutually consistent if there exists a 
definition which includes each of them. 

Obvious as this criterion seems, it is nevertheless of real 
value. An important special case is: Two definitions A, B of 
type G' are mutually consistent if there exist C, D, both regularf 

such that CA = DB. In fact, the definition expressed by 
either of the two equal forms CA, DB includes both A and B. 

Still further specialization occurs in case it happens that 
we can choose C = P, D = A. Any two regular definitions of 
type G' are mutually consistent if they are permutable. 

* Loc. cit., p. 38. 
t In a paper by Silverman and myself (TEANSACTIONS OF THIS SOCIETY, 

vol. 18 (1917), p. 1), the word "consistent" was used for this idea. The 
term in the text, suggested by Carmichael, loc. cit., p. I l l , seems preferable. 
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It can be shown* that all transformations of type G' per­
mutable with M are permutable with each other; hence all 
definitions of type G' permutable with M are mutually consistent 

An interesting case of this kind is furnished by Er. We 
have seen that Er and M are overlapping definitions; but it is 
easily verified that Er is permutable with M, hence Er and 
M8 are mutually consistent. 

The method outlined above, like that in the preceding sec­
tion, can sometimes be applied even if the two definitions are 
of different types. Thus, it can be shown that B\M = MJSi, 
where M is the function-to-function transformation 

(M) y(t) = —J x(u)du, 

and where all the formal processes involved have a meaning 
and are correct if applied to a sequence summable both J5i 
and M. Thus j?i and M will be consistent if M is regular; 
that is, if the existence of lim*_oo x(t) implies the existence 
and equality of Km*-» y(t). The transformation M is exactly 
what is known as the first Holder (or Cesàro) mean for con­
tinuous limits ;f it is known to be regular. Equally simple is 
the proof that Mr and B\ are mutually consistent. 

This method of proof seems susceptible of wide application 
in studying the question of mutual consistency, which is 
important, and which has as yet received little attention. 

6. Total Regularity. Let us now suppose we are dealing only 
with real sequences, and applying to them only real transforma­
tions. A regular definition must evaluate any convergent 
sequence, giving it its true value. It may naturally be asked 
whether this conservation of finite limits applies also to infin­
ity of definite sign; in other words, whether a sequence becom­
ing (say) positively infinite need be evaluated by a regular 
definition to positive infinity. The definition 2M — I: 

0 #1 + X2 + • • • + Xn 

yn = 2 xn 

is obviously regular; but if we take Xfl —"~ /v , then we find 
* Hurwitz and Silverman, loc. cit., p. 7. 
t See § 10. 
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yn = 1, so that 
Hm xn = + oo, lim yn = 1. 
w-*oo n-»oo 

In this case therefore regularity does not extend to the con­
servation of the improper limit + oo. 

A regular definition may be called totally regular if it 
evaluates every sequence which becomes positively (nega­
tively) infinite to + oo (— oo). 

A sufficient condition that a regular definition G be totally 
regular is that for all sufficiently great values of k, ak(t) ~ 0. 
In this case, condition (02) of the conditions for regularity is 
superfluous. If the definition is of type G', the condition, 
ank ^ 0 for all sufficiently great values of k, is also necessary. 

A closely related consideration is that of the effect of a 
regular transformation on the limits of indeterminacy of a 
sequence which it does not evaluate. It is desirable that a 
definition, if it does not evaluate a specific sequence, shall at 
least not render its oscillation more violent; this may readily 
happen, however. If we apply the definition 2M — I to the 
sequence 0, 2, 0, 4, 0, 8, • • •, for which 

lim inf xn = 0, 
w-*oo 

we find that 
lim inf yn = — oo. 

Without endeavoring to answer completely the question 
raised, I shall merely say that the condition for total regularity 
is sufficient also to insure that the new limits of indeterminacy 
shall not fall outside the interval of the old limits. 

The criterion for total regularity is easily tested for all the 
usual definitions. It is found that Mr, Cr, R\, r are totally 
regular for the values of r ^ 0 for which they are defined; 
Er is totally regular for r S 1. When the point set T is real, 
P, Br and the definition of Le Roy are totally regular.* 

We may also widen the scope of the notions of relative 
* The consideration of total regularity settles the question of the effect 

of these definitions on the series 1 + x + x2 + • • • at the point x = 1, 
which was left open in § 3. 
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inclusiveness and equivalence to take account of sequences 
evaluated to + °°« Obviously, on account of the relations 
MrM8 = M7**, ErE8 = Er8, the statements previously made 
regarding relative inclusiveness of Mr for varying r and of Er 

for varying r remain true even in the present extended sense. 
But it can be shown that Mr and Cr, which are equivalent for 
finite limits when r is a positive integer, do not retain this 
equivalence for the limit + <*> when r ^ 2; in fact there will 
always be sequences which are evaluated by Mr to + °°> 
and are not so evaluated by Cr. 

Silverman showed that the criterion for total regularity has 
the following consequences : No definition of type G' possessing 
an inverse can be equivalent to I both as regards finite and 
definitely infinite limits unless it is of the form K : yn = cnxn, 
where limn_*oo cn = 1. No two definitions A, B of type G' 
possessing inverses can be equivalent both as regards finite 
and definitely infinite limits unless A = KB. 

These statements would not hold if the restriction as to the 

possession of inverses were removed, as may be seen from the 
trivial example y\ = 0; yn — %n-u n > 1; which is equiva­
lent to / , even in the present extended sense. 

7. Adjunction or Omission of Elements. If a sequence 
converges, then the new sequence obtained by prefixing or 
omitting an element at the beginning will converge to the 
same value. We may inquire whether a similar property 
holds for definitions of summability; if a sequence is sum-
mable A to a value I, will the sequence obtained by prefix­
ing or omitting an element be summable A (or summable 
B, where B is expressible by means of A) to the value U 

This question has been answered for a number of definitions. 
In so far as it relates to prefixing an element, the answer 
must be independent of the value of the element prefixed; 
only the alteration in rank is significant. The question is 
equivalent to that of prefixing or omitting a term at the 
beginning of a series, with appropriate alteration in value of 
the series; it is in this form that it has usually been studied. 
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I shall summarize the most important results. Mr, Cr, Er, 
whenever they are regular, and P, permit adjunction or omis­
sion of an element. Borel's "absolute summability," which 
is not regular, has the same property; a more satisfactory 
settlement of the question for the Borel means is given by the 
theorem of Sannia: If a sequence is summable Br, then the 
sequence obtained by omitting an element is summable to the 
same value at any rate by the stronger definition Br-i, and 
the sequence obtained by omitting an element is summable to 
the same value even by the weaker definition Br+i* 

Hardy and Riesz state that it is possible to have a series 
summable i?x, r and remain so summable when a term is omit­
ted, the two values not differing by an amount equal to the 
omitted term. 

8. Necessary Conditions for Summability, If a series Xun 

converges, then un must approach zero; this is of course not 
sufficient for convergence, but it is a very useful property of 
convergent series. Somewhat similar necessary conditions 
exist for summability with respect to the commoner definitions; 
these conditions are sometimes expressed so as to involve terms 
of the series, sometimes elements of the sequence. For summ­
ability Mr or Cr, a necessary condition is that lim un/n

r = 0, 
and in fact even that lim xn/n

r = 0; for summability Er it is 
necessary that lim un/(2r — l)n = 0 and limxn/(2r — l)n = 0. 

For summability P it is necessary that the series XxJ71"1 

and 2W"""1 have radii of convergence =£ 1, therefore that 
lim sup \xn\

1,n ë 1 and lim sup |wn|1/n ~ 1. For summa­
bility Br it is necessary that the series Hixnt

n~ll(n — 1) ! have 
infinite radius of convergence, hence that lim | xn \

 lln/n = 0 
and lim |u n \

lln/n = 0. A necessary condition that a sequence 
(xn) be summable JBX, r to I is that 

n-oo \ Xn-fl / 

9. Multiplication of Series. The totality of expressions 
obtained by multiplying terms of one series Zun by terms 
of another series 2tfn may be represented formally by a 
double series 2wmfln. If we collect the terms of this double 
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series in any way into a simple series 2wn> the latter may be 
called a product series of the two given series. The behavior 
of the new series if the original series converges will differ ac­
cording to the way in which the terms are grouped. Thus, if 

Wi = UiVi, 

W2 = U1V2 + U2V2 + U2V1, 

Wz = UiVz + U2V3 + UzVz + UZV2 + UzVi, 

l£wn will converge whenever 2un, 2fln converge. 
Other methods of grouping, however, are generally more 

useful. The so-called Cauchy product, suggested by the 
grouping most natural for power series, takes 

W\ = U1V1, 

W% = U\V2 + ^ b 

Wz = UiVz + U2V2 + UzVi, 

In this case convergence of Swn, S^n does not insure conver­
gence of Swn; it is, however, true that if Swn, 2vn are con­
vergent, then 2wn will be summable M to the product of the 
values of 3ïun, 2vn. More generally, the Cauchy product of 
two series summable respectively Cr and C8 (R(r) > — 1, 
R(s) > — 1) is summable Cr+s+i, and the value of the product 
series is the product of the values of the given series. 

This gives an interesting instance of the use of non-regular 
definitions. If two series are not merely convergent, but 
summable CLj, then their Cauchy product will be convergent. 

There is a similar theorem for the Borel-Sannia definition. 
If two series are summable Br and B8, their Cauchy product 
is summable Bt to the correct value, where 

{ r + s —• 1 unless r > 0, or s > 0; 
the lesser of r, s if r > 0, or s > 0. 

The multiplication of Dirichlet's series suggests a different 
grouping of terms : 

Wn = YJ UdVnld, 
d 

where d takes as its values the divisors of n. For this group-
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ing, which we may call the Riesz product, we have the result: 
The Riesz product of two series summable #x,r and iJx,«> 
where Xn = log n, r > 0, s > 0, is summable i2x>r+8+i» 

10. Extensions to Other Types of Limit. The endeavor to 
assign a meaning to lining xn when it does not exist in the 
ordinary sense leads naturally to the same attempt for 
lim^oo^OO, where x{t) is a function of the continuous real 
variable t. The analogues of the Cesàro and Holder means 
were studied by Landau.* Investigations of the general type 
corresponding to G' were made by Silvermanf and Kojima.J 
I shall not repeat the most general results of these authors, 
but shall quote only the following special case:§ 

If K(x, y) is integrable in y for each value of x, 0 < y ^ x, 
and if for any f unction u{x) which is bounded and integrable in 
any finite interval, x ?== 0, we define 

v{x) = au(x) + I K(x, s)u(s)ds, 
Jo 

then a sufficient condition that lim®.»,* v(x) = / whenever 
lim^oo u{x) = I is that for constant a, 

I \K(x, y)\dy converges, lim I \K(x, y)\dy = 0, 
0 as-*oo JQ 

that for x > 0, 

r\K(x,y)\dy 
Jo 

is bounded, and that 

lim I K(x, y)dy = 1 — ce. 
âĵ -oo *JQ 

Extensions to double series have also been made. The 
analogues of the Cesàro and Holder means were given by 
C. N. Moore.|| Robison^f has made a general study of regu­
larity. An element of novelty in comparison to the case of 

* SACHSISCHE BERICHTE, vol. 65 (1913), p. 131. 

t TRANSACTIONS OF THIS SOCIETY, vol. 17 (1916), p. 284; this BUL­

LETIN, vol. 22 (1915-16), p. 459. 
î TÔHOKU JOURNAL, vol. 14 (1918), p. 64; vol. 18 (1920), p. 37. 
§ Silverman, this BULLETIN, loc. cit. 
II TRANSACTIONS OF THIS SOCIETY, vol. 14 (1913), p. 73. 

1f Ph.D. thesis, Cornell, 1919. 



1922.] REPORT ON DIVERGENT SERIES 35 

simple series is that even a convergent double series need not 
have its terms bounded. Robison's result corresponding to 
the theorem of Silverman and Toeplitz for simple series 
follows. 

A necessary and sufficient condition that the transformation 
m, n 

ymn = = / j Q>mnkl%kl 
k-l% 1=1 

carry every bounded convergent double sequence (xmn) into a 
bounded double sequence (ymn) convergent to the same value is that 

(1) for each k, I, lim amnki = 0; 

(2) for all m, n, 22 \amnki\ is bounded; 
m 

(3) for each I, lim ]T |a»nnw| = 0, 
m-*-co, n-*-oo k=i\ 

n 

and f or each Jc, lim ]£ |amnH| = 0; 
m—*•&), n-*oo l=z 1 

(4) lim 22 a^nki = 1. 

Robison has given also the theorem for double series corre­
sponding to the result of Carmichael and Hildebrandt, and 
the condition for total regularity. 

11. Other Questions. Time does not permit a detailed ac­
count of other interesting lines of study in connection with 
divergent series; a brief mention of a few results must suffice. 

Closely related to the regularity of a transformation of type 
G is the requirement that it carry every convergent sequence 
into a convergent sequence (irrespective of any relationship 
between the two limits) ; or that it carry a bounded sequence 
into a convergent sequence, or a bounded sequence into a 
bounded sequence These conditions have been studied by 
Kojima,* Fraleigh,f and J. Schur,J and for double sequences 
byRobison.|| Interesting investigations have been made of 
properties possessed not by all series summable according to 
a certain definition, but only by such of them as satisfy further 

* TÔHOKU JOURNAL, vol. 12 (1917), p. 291. 
t A.M. thesis, Cornell, 1918. 
t JOURNAL FÜR MATHEMATIK, vol. 151 (1920), p. 79. 
|| Loc. cit. 
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conditions. Typical theorems of this kind are the following: 
If 2un is summable M and nun < K, then Swn is convergent.* 
If 2un is summable B\ and V/i \un\ < K, then JiUn is 

convergent.^ 
For applications of the theory of divergent series to im­

portant special types of series, to differential equations, and 
to mathematical physics, reference may be made to the three 
expository papers mentioned in § 1. 

12. Conclusion. I shall permit myself, in closing, to make 
two observations which represent only personal opinion. 

Any definition of the generalized limit of a sequence is 
ultimately only an actual limit of something else; it seems to 
me worth while to recall frequently, in dealing with divergent 
series, that we are in fact studying only ordinary processes of 
convergence. It is at times more illuminating for the com­
prehension of a theorem on summable series to supply all the 
transformations implied in the definition of summability and 
state the result entirely in terms of ordinary limits than to use 
the more concise form which is in essence symbolic. Indeed, 
important applications of the conditions for regularity are 
proofs of theorems on limits, in which divergent sequences 
present themselves, if at all, only as an afterthought. Such 
applications have been given by Silverman and by Schur. 

As regards the various current problems in connection with 
divergent series, the most important seems to me personally 
to be that of mutual consistency. It would be desirable to 
be able to assert of any two definitions which have been used 
practically that they are or are not mutually consistent, and 
to have such workable criteria as would make it possible to 
test new definitions which may be proposed. Without such 
information, the use of two different methods of summability 
in a single investigation, unless one is merely included in the 
other, would seem to produce at least grave inconvenience. 
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* Hardy, PROCEEDINGS OF THE LONDON SOCIETY (2), vol. 8 (1910), p. 
302; Landau, PRACE MATEMATYCZNO-FIZYCZNE, vol. 21 (1910), p. 97; Fuji-
wara, TÔHOKU JOURNAL, vol. 15 (1919), p. 323. 
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