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THE PSEUDO-DERIVATIVE OF A SUMMABLE 
FUNCTION. 

BY PROFESSOR WILLIAM L. HART. 

(Read before the American Mathematical Society September 8, 1920.) 

Introduction.—In the present paper we shall consider two 
different types of derivative functions, to be termed pseudo-
derivatives. These derivatives will be defined for real-valued 
functions satisfying suitable conditions of summability. The 
definitions will state certain functional relations which the 
pseudo-derivatives must satisfy. These relations involve the 
well-known notion of convergence in the mean, explained in 
§ 1, below. The pseudo-derivative of the first type is con­
sidered in § 2, and that of the second type in § 3. The present 
paper is concerned merely with the definition of these deriva­
tives and with a discussion of a few of their properties. 
Applications of such derivatives will be considered in a later 
paper. 

All integrals in this paper are taken in the Lebesgue sense. 
A function ƒ will be termed integrable if both ƒ and ƒ2 are sum-
mable in the Lebesgue sense. All functions and variables will 
be supposed real-valued. The phrase almost everywhere will 
mean with the exception of at most a set of points of measure 
zero. In the discussion below two functions Fi(x) and F2(x), 
defined on a set E} will be called the same if they are equal 
almost everywhere on E. In all equations below, as for 
example Fi(x) = F*i(x), it will be understood that the equality 
may cease to hold on some sub-set of E of measure zero. 

1. Convergence in the Mean.—We shall have occasion to use 
a slight extension of the notion of convergence in the mean 
as it has been defined in the case of sequences of functions.* 
Let q(s, h) be defined for \h\ ^h^ h 4= 0, and for s on a 
measurable set E, where s may be considered as a single 
or as an m-partite variable (si, s2, •••, sm). For every h, 
suppose that q(s, h) is integrable on E. 

DEFINITION 1. The function q(s, h) converges in the mean 

* Cf. Plancherel, Rendiconti del Circolo Matematico di Palermo, vol. 30 
(1910), p. 292. 
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to an integrable function g(s) as h approaches zero in case 

(1) lim f[q(s, h) - g(S)fds = 0. 

We shall say that g(s) is the limit in the mean and shall 
write, for abbreviation, 

(2) l.m. q(s, h) = g(s). 
h-0 

This type of convergence has properties similar to those* 
possessed by convergence in the mean as defined for sequences. 
Certain properties of g(s) are listed below; the proofs of the 
statements will not be given because of their obvious relation­
ship to proofs in the case of sequences of functions. 

(a) A necessary and sufficient condition that (1) should 
hold for some function g(s) is that 

lim I [q(s, hi) — q(s, h2)]
2ds = 0. 

hi, 7i2=o JE 

(b) If g(s) = g'(s) and g(s) = g"(s) both satisfy (2), then 
g'(s) = g"(s). 

(c) At least one sequence of values (hi, h2, • • •, hny • • •)> 
with Y\mn=din = 0, can be selected so that limn=00q(s, hn) = g(s), 
almost uniformly f for s on E. 

(d) The function g(s) satisfies the equation 

(3) lim fq2(s,h)ds= f g\s)ds. 
h=o JE JE 

(e) Every sequence (hi, h2, • • •) with limn=aohn = 0, corre­
sponding to which the sequence [q(s, hn); n = 1, 2, • • •] 
converges almost everywhere on E, has the property that 

lim q(s, hn) = g(s), 
w=oo 

almost everywhere on E. 

2. The Pseudo-derivative of the First Kind.—Let ƒ (a;) be defined 
and integrable for values of x on some measurable set E and 
let q(x, h) = [f(x + h) — f(x)]/h. For a given value of h, if 
(x + h) is not in E, define f(x + h) = f(x). If, for a given 
h and x, f(x + h) and f(x) are infinities of the same sign, let 

* Cf. Plancherel, loc. cit., p. 294. 
t Cf. Plancherel, loc. cit., p. 292. 
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q(x, h) be given any arbitrary value, say zero. Then, for 
every h #= 0, q(x, h) is integrable on E. 

DEFINITION 2. The pseudo-derivative of f(x) is l.m.Ass0 
q(x, h), provided this limit exists. It will be denoted by the 
symbol fx(x). 

As a consequence of Definition 1, fx(x) is unique if it exists, 
and satisfies the functional equation 

(4) lim f[q(x, h) - fx(x)]Hx = 0. 
&=o JE 

Moreover, at least one sequence (hi, h2, • • • ) can be selected 
as in (c), § 1, such that 

(5) lim q(x, hn) = fx(x), 
n—co 

almost uniformly for x on E. Suppose, for example, that E 
is the set of all irrational numbers on the interval (0, 1) and 
let f(x) = x. Then it is easy to show that fx(x) = 1. 

In analogy with the procedure followed in dealing with the 
classical derivative, let us denote the pseudo-derivative of 
order n olf(x) by the symbol fXn(x), and let us define it to be the 
pseudo-derivative of fXn-i(x), for n = 2, 3, • • •. In the case 
of a function f(x; y\, • • -, yu), let us define fx(x; b\, • • -, &&), 
the partial pseudo-derivative with respect to x at the point 
(yi = 6i, • • •, yu = bh), to be the pseudo-derivative in the 
sense of Definition 2 of the function f(x; b\, • • -, bk). 

In the two theorems which follow, conditions are given 
under which the pseudo-derivative is equal to the classical 
derivative. 

THEOREM I. Suppose that the pseudo-derivative fx(x) exists 
and that f(x) also possesses a derivative df(x)jdx almost every­
where on E. Then df(x)/dx = fx(x) almost everywhere on E. 

Since df(x)/dx exists, we have the equation 

(6) lim g<», A) - # M 
A=O ax 

almost everywhere on E. Since (5) and (6) both hold almost 
everywhere on E, it follows that the theorem is true. 

THEOREM II. Let the set E be the closed interval (a, b) and 
suppose that a constant K > 0 exists such that, for all values of 
h 4= 0 and for all points x on (a, b), \q(x, h)\ ^ K. Then, 



1921.] PSEUDO-DERIVATIVES. 205 

if the classical derivative exists at each point of (a, 6), the pseudo-
derivative f x(x) exists andfx(x) = df(x)/dx. 

For values x > b and x < a, define f(x) by the equations 

fix) =ƒ(«) + (x- a) ^ (x<a), 

M=f(b)+(x-b)^ (x>b). 

Since ƒ (#) is measurable, it is seen that df(x)/dx is also measur­
able. Moreover, as a consequence of a well-known property* 
of Lebesgue integrals it is allowable to invert lmu=o and /(a&) 

on the left side of the following equation and to obtain 

lim I q(x, h) -•,— \ dx = 0. 
h=0 J(ab) L dX J 

Hence, by definition, fx(x) = df(x)jdx. 
I t is easily verified that Theorem II remains true if, in 

place of the assumption of the theorem in regard to df(x)fdx, 
we assume that it exists everywhere on (a, b) except at points 
a; on a set H of measure zero. 

3. The Pseudo-derivative of the Second Kind.—Let us consider 
a function f(x, s) defined for values of the variable a; on a 
closed interval {a, b) and for values of the m-partite variable 
s = Oi, • • •, sm) on a measurable set E. In all the discussion 
below suppose that, for every x on (a, b), f{x, s) is integrable 
on E and let 

(7) q(x, h, s) = £ . 

For a given value of h 4= 0, if the point (x + h) is not on (a, b), 
define f(x + h, s) = f(x, s). For points s at which ƒ (x + ^, *) 
and f(x, s) are infinities of the same sign, let us give q(x, h, s) 
any arbitrary value, say zero. Then, if x = XQ is on (a, 6), it 
follows that the function q(xo, h, s), for every h 4= 0, is 
integrable on E. 

DEFINITION 3. The pseudo-derivative of the second kind of 
f{x, s) with respect to x at the point x = Xo, is l.m.h=0q(xQ, h, s), 
provided this limit exists. I t will be denoted by the symbol 
fx(x,s). 

* Cf. de la Vallée Poussin, Intégrales de Lebesgue, p. 44. 
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For brevity, the designation "second kind" will be omitted 
in the future in this section of the paper in speaking of the 
pseudo-derivatives fx(x, s). As a consequence of Definition 
1, if the function fx(x0, s) exists, it is unique and satisfies 
the functional equation 

(8) lim I [q(x0, h, s) — fx(x0, s)]2ds = 0. 
h—o JE 

If f(x, s) is constant with respect to s it is seen that fx(x, s) 
reduces to the classical derivative of a function of the single 
variable x. Moreover, from (c), § 1, it follows that at least 
one sequence (hn; n = 1, 2, •••) can be selected with 
limw==00An = 0, such that 

(9) lim q(x0, hn, s) = fx(x0, s), 
w=oo 

almost uniformly for s on E. 
In the theorems that follow some useful properties of the 

pseudo-derivative fx (x, s) are considered. 
THEOREM III. Suppose that at x = x0 the pseudo-derivative 

fx(xo, s) exists, and that at x = XQ the partial derivative (in the 
classical sense) df(xo, s)/dx exists, finite or infinite, almost 
everywhere on E. Then it follows that df(xo, s)/dx = fx(xo, s). 

By hypothesis we have, almost everywhere on E, 

(10) lim q(x0, h, s) = ——f— . 
ft=0 OX 

I t is easily verified that the theorem is an immediate conse­
quence of equations (9) and (10). 

THEOREM IV. Let the function p(s) be bounded and measur­
able on E, and let F(x, s) = f(x, s)p(s). Then, iffx(xo, s) exists, 
it follows that there exists, likewise, Fx\x0, s) = fx(x0, s)p(s). 

The existence of Fx(x0, s) follows from the fact that 

lim I [q(x0, h, s)p(s) — fx(x0, s)p(s)]2ds = 0, 
A=O JE 

in case equation (8) holds. 
THEOREM V. Iffx(xo, s) exists, and if p(s) is any integrable 

function, the f unction H(x) = fsfix, s)p(s)ds has a derivative at 
the point x = XQ, given by the expression 

(11) dx° = J U(x0, s)p(s)ds. 
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Let AH = [H(xo + h) — H{XQ)]. Then, because of the 
Schwarz inequality for integrals, it follows that 

AJ-F f* 1 1 / * 
~T I fx(xo, s)p(s)ds\ = I [fx'(x0, s) - q(x0, h, s)]p(s)ds 

fi JE \J E 

= \ j P'tàdsyl j UX{XQ, S) - q(x0, h, s)]2ds, 

and this expression, because of (8), approaches zero with h. 
This establishes the equation (11). 

Let us represent by M(x) the square root of the quantity 
fiïf2(%, s)ds. Then we have the following theorem. 

THEOREM VI. Suppose that, at x = x0, M(x0) =(= 0 and 
that there exists fx'(xo, s). Then, at x — x0, M(x) has the 
derivative 

(12) mgd = _ i _ £U{xo> s)f(xo! s)ds. 
We shall establish the existence of dM2(x0)/dx; from this 

result (12) will follow immediately. We obtain, by use of (7), 

M2(x0 +h)- M2(x0) _ rP(xo+h,s)-P(xo,s)d_ 
fl J J57 it 

= h I q2(x0, h, s)ds + 2 I q(x0, h, s)f(x0, s)ds. 
JE JE 

As h approaches zero, the first term on the right in (13) 
approaches zero by (d), § 1. The second term approaches 
2 fEfx'(xo, s)f(x0, s)ds because 

*J E 

12 

[q(x0, h, s) — U(x0, s)]f(x0, s)ds 

< M2(x0) I [q(x0, h, s) - fx(x0, s)]2ds, 
JE 

which approaches zero with h. Consequently there exists 

dM2(x0) 
dx 

= 2 I fx(x0, s)f(x0, s)ds. 
JE 

In the future suppose that E is a closed interval c £ s ^ d. 
Consider an infinite system of integrable functions 

I = lVn(s); n = 1, 2, • • •], 
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which are unitary and orthogonal on E; that is, 

(14) I Pi(s)pj(s) = dij (du= 1, i= 1, 2, • • • ; d#=0 , i + j ) . 

If ƒ(#, s) satisfies the conditions of this section of the paper, let 

(15) Zi(x) = I Pi(s)f(x, s)ds (i = 1, 2, • • •)• 
JE 

For brevity we shall term the Zi(x) the Fourier coefficients of 
f(x9 s) with respect to the system / and we shall call the vector 
%(x) = [zi(x), ZÏ(X), • • •] the Fourier vector of f(x, s). As an 
immediate consequence of Theorem V we may state that, if 
fx(%o, s) exists, the Fourier coefficients have derivatives at 
x = x0 given by the expressions 

(16) d^Èr = X^) /* '^ , s)ds a = i, 2, • • • ). 
If fx'(x, s) exists, let rj(x) = [yi(x), y2{x), • • •] represent its 
Fourier vector with respect to the system I. I t is seen from 
(16) that the yi and zi are related by the equation 

yi(x) = dzi{x)jdx. 

Let us suppose in the future that the system / is complete 
for the class of all integrable functions on E. That is, we 
assume that there does not exist any integrable function 
h{s) 4= 0 such that fEk(s)pi(s) = 0 for i = 1, 2, • • •. Then 
we shall establish the following theorem. 

THEOREM VII. For a value of x at which jV'{x, s) exists, 

(17) hm JL I 1 y%(x) J = 0. 

I t has been proved by F. Riesz* that, if g(s) and h{s) are 
two integrable functions whose Fourier coefficients with 
respect to the system / are (ah a2, • • • ) and (6i, b2, • • • ) respec­
tively, then 

1 g(s)h(s)ds = 22a,ibi. 

From this Riesz formula, it is easily verified that the infinite 
* Cf. Plancherel, loc. cit., p. 296. 
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sum in (17) is equal to 

I [q(x> h, s) - fx'(x, s)]2ds, 

so that Theorem VII is an immediate consequence of (8). 
Before considering the next theorem, let us note some results 

which follow directly from the Riesz-Fischer* theorem con­
cerning Fourier constants. If, for every x on (a, 6), ƒ / (# , s) 
exists and is zero almost everywhere on E, then, because of 
(16), the Fourier coefficients of f(x, s) are constants. Con­
sequently, by the Riesz-Fischer theorem, an integrable function 
g(s) exists such that for every x on (a, 6), f(x, s) = g(s). 
If %(x) = [zx(x), z2(x), •••] is an infinite set of functions 
defined for x on (a, b) and is such that SîLi z^{x) converges 
for all values of x, then there exists, for every x on (a, b), a 
unique function w(x, s) with the following properties: 

(a) w(x, s) is integrable on E. 
(b) £(#) is the Fourier vector of w(x, s) with respect to L 

Let rj(x) — [yi(x), yi(x), • • •] be a second set of functions with 
the same properties as %(x), and let u(x, s) be the function 
associated with rj(x) and having the characteristics corre­
sponding to (a) and (6) above. Then, in regard to %(x) and 
7]{x)y we may state the following theorem. 

THEOREM VIII . If, for a certain x' on (a, 6), £(a') and r)(xf) 
satisfy (17), the function w{x, s) has a pseudo-derivative at 
x = x' satisfying the equation wx'{xf, s) = u(x', s). 

To establish the theorem consider the expression 

nn r\w(x'+h,s)-w{x',s) J 
(18) J I ^ u(x', s) J ds. 

By the Riesz formula, expression (18) is seen to equal the infin­
ite sum entering in (17) with x = x'. Hence (18) approaches 
zero with h and, by definition, wx'(x

r, s) = u(x', s). 
Let us now establish an analog of the mean value theorem, 

for functions possessing pseudo-derivatives. 
THEOREM IX. For every x on (a, b) suppose that ƒ</(#, s) 

exists and that 

(19) lim f [ƒ</(*', s) - fx'(x, s)fds = 0. 
xf—x f J E 

* Cf. Plancherai, loc. cit., p. 296. 
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Let us assume, also, that fx
r{x, s) is integrable with respect to 

{x, s) in the rectangle (a ^ x ^b, c ^ s ^ d). Then it follows 
that, for all points (x, x') on (a, b), 

(20) ƒ(*', s) - f{x, s) = Or' - x) f fx
f[x + u(x' - x), s]du. 

Jo 

In (20), it should be recalled that, for given values of (x, x'), 
the conventions of this paper permit that the equation should 
not hold for a set of points s with measure zero. 

Let %(x) be the Fourier vector oîf(x, s) relative to the com­
plete system I. Then it is seen that the derivatives (16) 
exist and, moreover, that 

<2i> ^ - ^ = X [ / x ' ( a ; ' s ) ~uix''s)]pi(s)ds-
On applying the Schwarz inequality for integrals to the right 
side of (21), it is seen by (19) that the functions dzi(x)/dx are 
continuous for every value of x on (a, b). Therefore 

,~~s , ,s / x / / N T1 dzi[x + u(xf — x)] _ 
(22) Zi(x') - Zi(x) = (x' - x) I ———± ~du 

= (x' — x) I I Vi{s)fx[x + u(xf — x), s]ds du, 

where the last reduction was accomplished with the aid of 
(16). Let (xf, x) be fixed and let us show that the left and the 
right sides of (20) have the same Fourier coefficients. From 
this result, as an immediate consequence of the Riesz-Fischer 
theorem, it will follow that equation (20) is satisfied. 

Let K(x, xf, s) represent the right of (20). From the theory 
of Lebesgue integrals* it follows that K{x, x', s) is defined for 
all values of s on E except possibly for a set E\ of measure zero. 
If arbitrary values are given to K(x, x', s) at points in E\, K 
becomes an integrable function on the interval E. Let 
(ai, a2, • • • ) be the Fourier coefficients of K(x, xr, s) with 
respect to I. Then we obtain 

(23) ai = (x' — x) I pi{s) I fx
f[x + u(x' — x), s]du ds 

= Zi(x') — Zi{x) (i == 1, 2, • • • ) , 

* Cf. de la Vallée Poussin, loc. cit., p. 53. 
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where the last reduction was made by interchanging integra­
tions in (23) and by comparing the result with (22). The 
interchange was permissible* because of our present hypothe­
ses. Since [zi(x') — Zi(x)] is the ith Fourier coefficient of 
the left side of (20),, we have completed the proof of the 
theorem. 

In a later paper the author will consider applications of the 
present results in the theory of functionals whose arguments 
are summable functions. 

UNIVERSITY OF MINNESOTA, 

December 15, 1920. 

NOTE ON MINIMAL VARIETIES IN HYPERSPACE. 

BY PROFESSOR C. L . E . MOORE. 

(Read before the American Mathematical Society December 29, 1920.) 

1. I T is known that a necessary and sufficient condition 
that a surface of two dimensions in hyperspace be minimal 
is the vanishing of the vector mean curvature.f I t is the 
purpose of this note to show that mean curvature of a variety 
Vm in a space of n dimensions can be defined in the same way 
and that its vanishing is a necessary and sufficient condition 
that Vm be minimal. I shall use the absolute calculus, since 
one of its chief merits is the ease with which invariants can 
be written down. In fact the very form of an expression 
shows whether or not it is invariant. Enough vector analysis 
is used to simplify the form of the expressions. 

The variety Vm can be written vectorially in the form 

y = y(xi, x2, • • • , xm). 
Then 

m 

ds2 = dy-dy = ^ arsdxrdxs. 
i 

If we write 

* Cf. de la Vallée Poussin, loc. cit., p. 53. 
fWilson and Moore, " Differential geometry of two-dimensional surfaces 

in hyperspace," Proceedings of the Amer. Acad., vol. 52 (1916). 


