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SOME RECENT DEVELOPMENTS IN THE 
CALCULUS OF VARIATIONS.* 

BY PROFESSOR GILBERT AMES BLISS. 

IT is my purpose to speak this afternoon of a part of the 
theory of the calculus of variations which has aroused the 
interest and taxed the ingenuity of a sequence of mathe­
maticians beginning with Legendre, and extending by way of 
Jacobi, Clebsch, Weierstrass, and a numerous array of others, 
to the present time. The literature of the subject is very 
large and is still growing. I was discussing recently the title 
of this address with a fellow mathematician who remarked 
that he was not aware that there had been any recent progress 
in the calculus of variations. This was a very natural sus­
picion, I think, in view of the fact that the attention of most 
mathematicians of the present time seems irresistibly attracted 
to such subjects as integral equations and their generaliza­
tions, the theory of definite integration, and the theory of 
functions of lines. It is indeed in these latter domains that 
the activities especially characteristic of the present era are 
centered, and the progress already made in them, and the 
further progress inevitable in the near future, will doubtless be 
sufficient alone to insure for our generation of mathematical 
workers a noteworthy place in the history of the science. 

While speaking of present day mathematical tendencies I 
should like to take occasion to mention a remark which has 
been made to me a number of times by persons who are inter­
ested in mathematics primarily for its applications. The feel­
ing of some of these scientists seems to be that mathematical 
research in America is drawing farther and farther away 
from the forms of mathematics most immediately useful in 
related subjects, and they wish to attract the attention and 
stimulate the interest of mathematicians in the directions of 
these intermediate domains. We should indeed sympathize 
heartily with this desire. It is not at all to be regarded 

* Address of the retiring chairman of the Chicago Section of the Amer­
ican Mathematical Society, read at the joint meeting of the Chicago and 
Southwestern Sections, the Missouri Section of the Mathematical Asso­
ciation of America, and Section A of the American Association for the 
Advancement of Science, at St. Louis, December 30, 1919. 
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as unfortunate that so much research is being carried on in 
this country in the purely mathematical field, for one must 
not forget that the history of mathematics presents repeated 
instances of pure mathematics of former times which has 
become applied mathematics of to-day. Furthermore from 
the educational standpoint it is most important to note that 
the spirit of research itself, apart from the results attained, is 
the guarantee in any individual of continuous self-instruction 
and development, and consequent increase in value to his 
community. It does seem unfortunate, however, that for 
some reason the number of people in this country interested 
in the adaptation of mathematical theories to the pressing 
contemporary problems of the applications has been relatively 
small. I am hoping sincerely that cooperation of mathe­
maticians with scientists in other fields will presently be 
effective in remedying this defect. The mathematical com­
munity should assist in every possible way in developing 
strong applied mathematical research centers especially where 
beginnings have already been made, in encouraging graduate 
students to investigations in the fields intermediate between 
mathematics and the neighboring sciences, and in the dis­
covery and dissemination among maturer workers of informa­
tion concerning the applied mathematical problems now await­
ing solution. In this connection let me also suggest that 
mathematicians would do well to inquire searchingly into the 
advantages or disadvantages of cooperative work among 
themselves, as well as with scientists in other fields. Co­
operation seems to be the watchword of the time, and we 
should not be the last to recognize it. I am myself not yet 
convinced of the economy of group effort as over against 
individual effort in mathematical research, but I believe it 
important that in the near future we should have some con­
clusive information about it. 

Let me return, however, to the original topic of my dis­
course which was to have been a part of the theory of the 
calculus of variations. I should like very much to dwell on 
some of the modifications which have been made possible by 
recent progress in the domains of real function theory men­
tioned in my first paragraph above, but it would be impossi­
ble in the limited time at my disposal. Instead I wish to speak 
of a new method of treating the second variation in the cal­
culus of variations, a method which has rested partly developed 
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in my mind for some time, and which has recently turned out 
to be effective in simplifying the theory of the second variation 
and coordinating the complicated and extensive literature of 
the subject. 

The simplest problem of the calculus of variations, the one 
to which my expository remarks this afternoon must be for 
the most part restricted, is that of determining a curve 

(C) y = yix) Oi ^ x <; x2) 

in the ^ -p lane , joining two fixed points (xi, yi) and (x2, 2/2), 
and minimizing an integral 

I f(x,y(x),y'(x))dx. 

In order to obtain conditions which must be satisfied by a 
minimizing arc let us consider the values of the integral along 
the curves of a family of the form 

V = y(x) + arj(x) (xi S % S «2), 

where a is a constant to be varied at pleasure and rj(x) is a 
function which vanishes at #1 and x2, so that t\(xi) = 17(̂ 2) = 0. 
All of the curves of this family pass through the end points 
of the original curve C, on account of the last condition imposed 
upon the rj(x), and it is clear that the function of a, 

J(oc) = I /Or, y + at\y y' + arjr 

Jx\ 
')dx, 

must have a minimum for a = 0, so that by the usual theory 
of maxima and minima the conditions 

(2) 

(3) 

f x2 

(fvV+fy'v')dx=0, 

J"(fi)= (fwV2 + 2fw"nv'+ fv'y'V'2)dx 
VX\ 

VX\ 

2Q(a, 77, rf)dx ^ 0 

must be satisfied for every choice of the function rj(x) vanishing 
at xi and x2. Here the arguments of the derivatives of ƒ are 
the y(x) and yr(x) which belong to the curve C, and the symbol 
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2Q(x, y, rj') is merely a notation for the quadratic form which 
appears in the integrand of J"(0). The expressions (2) and 
(3) are called, respectively, the first and second variations of 
the integral J along the arc C. 

The first term of the first variation can be integrated by 
parts in simple fashion giving the equation 

«/'(O) = r(fy' ~ fXfydx)^dx = 0 

which must hold for every r)(x) vanishing at x\ and x2, and it 
is provable from this condition that there must be a constant 
c such that along the minimizing arc C 

(4) j y = fydx+c. 
•Jx\ 

This is a very important equation from which can be deduced 
several consequences. In the first place the derivative fy' 
must be continuous all along the minimizing arc C, since the 
second member of the equation has this property, so that at 
each corner point (x0, yo) of C the equation 

(5) fyixo, y0, y'(x0 - 0)) = fy'(xo, yo, y'(xo + 0)) 

must be satisfied by the two slopes y'(x0 — 0), yf{xQ + 0) of 
the arc C toward the right and left from the corner. In 
the second place it is provable at once by differentiating the 
two sides of the equation that the differential equation 

(6) izfv' = fi dxJ Jy 

must be satisfied everywhere on C. Finally it follows from 
the equation (4) by somewhat more complicated reasoning 
that the minimizing arc, supposed at first to have only a 
first derivative y' elsewhere than at corners, must have also 
higher derivatives, at least at every point at which the condi­
tion fy'y' 4= 0 is satisfied, i.e. at every point at which the 
differential equation (6) is non-singular. 

The differential equation (6) of the minimizing arc is now 
usually ascribed to Euler,* though for a long time it was called 

* Methodus inveniendi, etc. (1744), Chapter II, Section 21; translated 
into German in Ostwald's Klassiker der exakten Wissenschaften, No. 46, 
p. 53. 
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the Lagrange equation, because Lagrange adopted it and used 
it so widely. The integration by parts which I have mentioned 
in treating the first variation is due to du Bois Reymond.* 
The corner condition (5) was deduced by Weierstrass for the 
parametric case in his lectures as early as 1865, but was re­
discovered by Erdmann in 1877f before the results of Weier­
strass were published. The differentiability properties of the 
minimizing arc were studied by Hubert! by means of the 
equation (4), but I think that the derivation of them from 
this equation by a very simple application of implicit function 
theorems was due to Mason and myself.§ 

Before proceeding to the theory of the second variation 
which is my ultimate goal, I must mention two further con­
tributions to the theory by Weierstrass, familiar to those 
of you who have studied the calculus of variations, but perhaps 
not so to others. In his lectures of 1879 Weierstrass intro­
duced his so-called JS-function 

E(x, y, y', y') = f(x, y, y') - f(x, y, y') - {yf - y')fy'(x, y, y'). 

It is clearly the difference of f(x, y, yr) and the sum of the 
first two terms obtained by expanding this function by Taylor's 
formula in powers of y'' — y''. With the help of very simple 
types of comparison curves he established the further condi­
tion that 

E(x, y, y', y') ^ 0 

at every set of elements (x, y, y', y') for which x, y, y' belongs 
to the arc C and y' is arbitrary. This was a new and important 
result, for all the necessary conditions deduced before his 
time had involved only comparison curves which hugged 
closely the original arc C both in position and direction, and 
he was the first to show that the admission of variations 
which departed widely in direction, though not in position, 
from the minimizing arc C gives rise to this further restrictive 
property. 

But he added to the theory in other important respects 
also, only one of which I can here lay before you. The 
equation (6), after the differentiation with respect to x has 

* Math. Annalen, vol. 15 (1879), p. 313. 
t Journal für Mathematik, vol. 82 (1877), p. 21. 
t Göttinger Nachrichten, 1900, p. 253. 
§ " The properties of curves in space which minimize a definite integral," 

Trans. Amer. Math. Society, vol. 9 (1908), p. 440. 
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been performed, has the form 

Jy'x + jy'vV "T'Jv'v'y ~ Jv> 

which shows it to be of the second order, and its solutions form 
a two-parameter family of curves which are called the ex­
tremals of the problem. Weierstrass considered especially 
one-parameter families of such extremals of the form 

(7) y = <p(x, a), 

containing the particular arc C, whose minimizing properties 
are under investigation, for a particular parameter value a0. 
If a family of this sort can be found which simply covers a 
neighborhood F of C, then the region F with its covering of 
extremals is called a field about C. By saying that F is 
simply covered by the family (7) it is meant that through each 
point of the region there passes one and but one extremal of 
the family, so that with each point (x, y) of the field F there is 
associated a unique extremal slope p(x, y). If now C is an 
arbitrary curve 

(C) y = y(x) (xi <^x <, x2) 

in the field F joining the end points of C then Weierstrass 
showed that the difference J(C) — J(C) of the values of J 
along the two arcs is expressible by the formula 

(8) J(C)-J(C)= E(x,y,p(x,y),y')dx 

in which y stands always for the function y(x) defining the 
arc (7. 

It is clear from this formula that J{C) will surely be a 
minimum if the arc C can be imbedded in a field F of the type 
described above, and if the integrand in the second member 
of the formula (8) is always positive along arcs of the type of 
C in the field. I should be giving a resumé of most of the 
theory of the calculus of variations if I should attempt to 
describe in detail the conditions under which the field F 
can be constructed, and which insure the minimizing properties 
of C. They are, however, well known, and for this simple case 
are not difficult to develop and present. 
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Hilbert* devised a very elegant method of establishing the 
formula (8) which has now superseded with most writers the 
original "Weierstrass construction" by means of which Weier­
strass himself established his result. Hilbert showed that the 
value of the integral 

J*(C) = I {f(x, y, y') + [y' - p(x, y)]fy'(x, y, p(x, y))}dx 

is independent of the path C chosen in the field joining two 
fixed points, and that along an extremal arc of the field 
J*((7) = J(C), since along such an arc the differential equation 
y' = p(x, y) is always satisfied. It follows then at once that 

J(C) - J(C) = J(C) - J*(C) = J(C) - J*(C) 

= I E(x, y, p(x, y), yf)dx. 

From a very early period in the history of the calculus of 
variations to the time of Weierstrass it was thought that an 
arc C which made the first variation zero and the second 
variation positive for all choices of the function 77, would surely 
minimize the integral J. The acceptance of this assumption, 
unjustified by any proof, was due to the analogy between the 
calculus of variations and the theory of maxima and minima 
of ordinary functions of ordinary variables. The assumption 
is correct in the case of a weak minimum, for which the only 
comparison curves admitted are those which are near to C 
both in position and in direction, but Weierstrass showed that 
it is incorrect in the case of a strong minimum, for which the 
comparison curves are required to be close to C in position 
only. He developed his necessary E-function condition, in 
addition to those which are deduced from the first and second 
variations, and proved that the conditions so found when 
slightly modified are sufficient to insure the existence of a 
minimum along the arc C. 

One result of this partial misconception by those who pre­
ceded Weierstrass was an elaborate theory of the second 
variation, the purpose of which was to reduce it to a form in 
which it would be clearly positive for all choices of the function 

* An exposition is given by Bolza, Vorlesungen über Variationsrechnung, 
pp. 105ff. 
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rj (x). Legendre, in 1786,* was the first to attempt such a 
transformation. Euler, Lagrange, and other investigators 
before him had obtained from the first variation the differential 
equation of the minimizing curves, and conditions at the ends 
of the curves when the end points were allowed to vary. He 
himself begins his paper rather apologetically, it seems to me, 
his avowed purpose being to exhibit a criterion for distinguish­
ing between extremal arcs which furnish maxima and those 
which furnish minima, whereas he says that in a majority of 
the applications one can usually readily decide this question 
from the setting of the problem itself. Inspired, however, by 
the analogous theory of maxima and minima of functions of a 
finite number of variables, he succeeded in transforming the 
second variation into the form 

Jxi \ J y y J 

where a is a solution of a certain Riccati differential equation 
of the first order. From this he concluded that the second 
variation will always be positive and therefore that the 
integral (1) will always be minimized by an extremal arc C 
along which fyy > 0. His proof was faulty because there 
does not always exist a function a of the type he used, finite 
everywhere between the limits x\ and a?2, but his conclusion 
that the positive form found for the second variation would 
ensure a minimum is correct for the case of a weak minimum, 
as I have already indicated. It turns out that the condition, 
fy'v' ^ 0 along the minimizing extremal arc, is necessary for 
a minimum but not always sufficient, and it is now called the 
Legendre necessary condition. It is interesting to note that 
Legendre himself was not entirely satisfied with his analysis, 
for he published later comments on his own paper in which 
he called attention to some of the weaknesses of his argument 
and suggested methods of overcoming them. 

In 1837 Jacobif announced the discovery of an important ad­
vance in the theory of the transformation of the second varia­
tion. He disclosed the circumstances under which the trans-

* " Abhandlung über die Untersuchung der Maxima und Minima in der 
Variations-Rechnung," Mémoires de VAcadémie royale des Sciences, 1786, 
p. 7. 

t " Zur Theorie der Variationsrechnung und der Differentialgleich-
ungen," Journal für die reine und angewandte Mathematik, vol. 17 (1837), 
p. 68. 
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formation of Legendre was possible and characterized the cases 
when it is not possible. On every extremal arc with a fixed 
initial point A there is in general a point A' conjugate to A such 
that Legendre's transformation is possible on every arc AB ex­
cluding A', but not possible on an arc AB containing A'. In 
justifying these statements Jacobi introduced, in place of the 
Riccati equation used by Legendre, a linear differential equa­
tion of the second order, now usually called the Jacobi dif­
ferential equation, and he showed that its solutions can be 
obtained from those of Euler's equation by differentiations 
with respect to the constants of integration. He also used a 
new method for transforming the second variation which he 
applied successfully to the case when the integrand of the 
integral (1) contains higher derivatives of y. His conclusions 
were that an extremal arc AB which contains the conjugate 
point Ar either between A and B or at B can not minimize 
the integral J, and that an extremal arc AB which has fyy > 0 
along it and which does not contain the conjugate point A' 
will surely minimize J. 

Jacobi's results were correct with the exception of his state­
ment that no minimum can exist when the point A' conjugate 
to A coincides with B. It is now known that in this excep­
tional case there will sometimes be a minimum and sometimes 
not. But his proofs were again incomplete. I do not find 
in examining his paper that he justifies anywhere the necessity 
of the condition that the conjugate point Af shall not lie 
between A and B, and his sufficiency proof rests solely upon 
his transformation of the second variation to positive form 
and is open to the same objection which I have mentioned 
before as applying to all of the writers who preceded Weier-
strass. 

In extending his transformation to integrals containing 
higher derivatives of the function y(x) Jacobi made use of a 
theorem concerning linear differential equations which he did 
not prove. It is closely associated with the now well-known 
relation 

j 

u J(v) — v J{u) = j-M(u, v) 

satisfied by a self-adjoint linear differential equation of the 
nth order. His incomplete exposition aroused much interest 
and led to a series of papers by Delaunay, Minding, Spitzer, 
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Heine, Clebsch, Hesse, Lipschitz, Mayer, Schefîers, von 
Escherich, and others, who gave proofs of the Jacobi theorem 
and extended his results to more complicated problems of the 
calculus of variations. Of these papers I shall mention espe­
cially only those which seem to me to contain the more 
important advances. 

In 1858 Clebsch* studied the transformation of the second 
variation for the very general type of problem formulated by 
Lagrange. For such a problem there is an integral of the form 

s*x2 

I f(x>yi, --, Vn,yi, '",yn)dx, 

to be minimized in the class of curves 

Vi = Vi(x) tei ^ x ^ x2 ; i = 1, • • '9 n) 

which join two fixed points and which satisfy besides a set of 
differential equations 

<Pi(x, yh • • -, yn, jfi, • • -, yn') = 0 (i = 1, • • -, m < n). 

Clebsch found the system of linear differential equations of the 
second order analogous to the single Jacobi equation in the 
simpler case which we have been considering, and he expressed 
the second variation as an integral 

(9) r^Fy^WWdx. 

In this expression F is the sum 

F = ƒ + Xipi + • • • + Xn<Pm, 

the coefficients Xt- being functions of x, and the variables Wi 
are proportional to certain determinants of order n + 1 which 
satisfy the relations 

The Jacobi transformation of the second variation for the 
simpler problems is possible if there is a solution u of 

* Journal für die reine una angewandte Mathematik, vol. 55 (1858), pp. 
254 and 335; in two papers: "Ueber die Reduktion der zweiten Vari­
ation auf ihre einfachste Form," " Ueber diejenigen Problème der Vari-
ationsrechnung, welche nur eine unabhângige Variable enthalten." 
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Jacobi's equation which does not vanish on the interval 
X\x2. For the Lagrange problem here under consideration 
there must be an n-square matrix with columns belonging 
to n so-called conjugate systems of solutions of the Jacobi 
equations and having a determinant different from zero on 
XiX2. 

The transformation of Clebsch seems to me a very compli­
cated one. It is based upon a clever foresight of the form to 
which the integrand of the second variation may be reduced, 
and involves a count of the conditions necessary to make the 
reduction, the introduction of a sufficient number of arbitrary 
functions to satisfy these conditions, and the determination 
of the functions so introduced by a sequence of systems of 
equations. From the results of the transformation one may 
infer that the second variation will be positive whenever the 
quadratic form in the integrand of the expression (9) is positive 
at each point of the extremal arc under consideration. It is 
also provable that this property is necessary for a minimum, 
and the condition so found is sometimes called the Legendre-
Clebsch condition because it is the generalization of the one 
which Legendre deduced for the simpler case. 

Ten years after the papers of Clebsch appeared A. Mayer* 
presented the same results in somewhat simpler form and 
extended the Jacobi theory of the conjugate point to fit the 
Lagrange problem. He determined the position of the conju­
gate point by means of a zero of a determinant of solutions of 
Jacobi's equations, now called the Mayer determinant. 

But the most thorough study of the theory of the trans­
formation of the second variation is undoubtedly that of von 
Escherich.f In a series of five papers in 1898, 1899, and 1901 
he effected the Clebsch transformation for several types of 
problems by a generalization of Jacobi's method, and studied 
in great detail the theory of conjugate points and the conjugate 
systems of solutions of Jacobi's equations which are important 
in the determination of these points as well as in the trans­
formation itself. The equations which Lam designating here 
as the Jacobi equations, because they are generalizaitons of 

* " Ueber die Kriterien des Maximums und Minimums der einfachen 
Integrale," Journal für die reine und angewandte Mathematik, vol. 69 (1868), 
p. 238. 

t "Die zweite Variation der einfachen Integrale," Sitzungsberichte der 
kaiserlichen Akademie der Wissenschaften in Wien, Mathematisch-natur-
wissensehaftliche Classe, vols. 107, 108, 110 (1898, 1899, 1901). 
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the one which Jacobi used in the simpler case, are called by 
von Escherich the accessory system of linear differential 
equations. I will mention especially, without attempting to 
write it down, an important formula which lies at the basis 
of the von Escherich theory. It is a formula involving the 
determinants of conjugate systems and is of great assistance 
in the discussion of the zeros of the Mayer determinant which 
determines conjugate points. It should be added that von 
Escherich discovered, as a result of his detailed study, an 
important exceptional case for the Lagrange problem which 
he distinguishes from the more general normal or non-singular 
type. Most of his results apply only to the latter, and little 
is in fact known of the possibilities of the singular case. 

A discussion of the second variation could not be complete 
without mentioning the work of Weierstrass. His results 
were obtained between 1865 and 1888 but they became known 
very slowly because he described them only in his lectures. 
The book by Kneser, Vorlesungen über Variationsrechnung, 
1900, was I think the first published account of any im­
portance. Weierstrass confined his attention for the most 
part to the problem in parametric form in the plane. His 
transformation of the second variation for this case was 
exceedingly ingenious, but apparently not readily generalizable 
to higher spaces. His other work, however, had also an im­
portant influence upon the study of the second variation. 
For the sufficiency proof which he developed for the case of a 
strong minimum applies also to a weak minimum, and a 
sufficiency proof in the latter case based on the theory of the 
transformation of the second variation is therefore superfluous. 

Finally I should mention an interesting paper by Hahn* in 
which he shows the connection between the conjugate systems 
of solutions of Jacobi's equations and what are called Mayer 
fields. These latter are generalizations of the plane fields 
of which I have spoken above. For problems in higher spaces 
the analogue of the field covered by a one-parameter family of 
solutions of Euler's equations is an n-parameter family of 
extremals simply covering a region F of space. But the 
Hubert integral will be invariant in such a region F only 
if the n-parameter family itself has special properties, in 
which case F with its extremals is called a Mayer field 

* " Ueber den Zusammenhang zwischen den Theorien der zweiten Vari­
ation und der Weierstrass'schen Theorie der Variationsrechnung/' Rendi-
conti del Circolo Matematico di Palermo, vol. 29 (1910), p. 49. 
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because Mayer was the first to recognize and study the 
properties of such families. The phenomena presented by 
the n-parameter families of Mayer fields are analogous to 
those of two-parameter families of straight lines in space. 
Not every such family is orthogonal to a surface. When 
one has this property it will form a Mayer field for the problem 
of minimizing the ordinary length integral in space. I t turns 
out that every conjugate system of solutions of the Jacobi 
equations is deducible from the equations of the ^-parameter 
family of a Mayer field by differentiation with respect to its 
parameters, and Hahn uses this property to assist in con­
structing the various types of conjugate systems which von 
Escherich studied. 

I have now come to the results of which I wish especially 
to speak this afternoon. The historical sketch which I have 
given, though most incomplete, will suffice to show the great 
interest which mathematicians have taken in the theory of 
the second variation, and the complicated character of the 
transformations which have been devised for it. The results 
of Weierstrass mentioned above, and some very beautiful 
geometrical methods, developed by Darboux for geodesies and 
generalized by Kneser, enable one to deduce the necessary 
conditions of Legendre and Jacobi in some cases without the 
use of the complicated theory of the second variation. These 
proofs fail, however, when the enveloping curve upon which 
they depend has a singularity of a special type, and the efforts 
which have been made to complete the proofs to cover all 
cases have led to complications as great as those of the theory 
of the second variation itself. 

The importance of the theory of the second variation at the 
present time lies therefore primarily in the proofs which it 
provides for the necessity of the analogues, for more general 
problems, of the conditions discovered by Legendre and Jacobi 
for the simpler cases. Furthermore the transformation of the 
second variation into a form clearly positive may be made the 
basis for the justification of a set of sufficient conditions for a 
weak minimum, and if the transformation can be effected simply 
the method will be an economical one. Finally I regard it as 
highly desirable from a historical point of view that the com­
plicated theories which have been attached to the second 
variation should have an interpretation, in the light of recent 
results in the calculus of variations, which will make them more 
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perspicuous and less detached than they seem to be at present 
from the theory as a whole. 

For some years past I have been in the habit, in my lecture 
courses at the University of Chicago, of deducing the Legendre 
and Jacobi conditions for simpler problems by an application 
to the second variation of results described in the earlier 
part of this paper, the first two necessary conditions men­
tioned as deducible from the first variation and the Weier-
strass jE-function condition. The underlying thought is this. 
Since the second variation must always be positive or zero 
along a minimizing arc for all choices of the function rj(x) 
such that rj(xi) = yfa) = 0, we are led to the consideration 
of a minimum problem in the œrç-space for the integral (3) 
of the second variation. This problem is of precisely the 
same sort as the original problem of minimizing the integral 
(1). The curve v\ — 0 is necessarily a minimizing curve for 
the ^-problem, when J(C) is a minimum, since it gives the 
second variation its smallest value zero. Hence along it we 
must have the E-function condition satisfied, 

Q(x, ri, y)f) - Q(x, rj, rj') - (jj' - i?')U,'(*> r\, r\f) 

= Av(r-V)2^o, 
the first member of the equality being the Weierstrass E-
function for the integrand function Q of the second variation. 
It follows at once that the Legendre condition fyy ^ 0 must 
hold along the minimizing arc. 

Furthermore, the Euler differential equation of this minimum 
problem of the second variation is the equation 

0,7 "" dx®*' ^ ( ^ + / w V ) - fatfvW + fvW') = 0 

which is precisely the linear differential equation of the second 
order in rj upon which Jacobi based his theory of the second 
variation. The coefficient of rj,f in this equation is fy'y', and 
in discussing the Jacobi condition it is customary to presuppose 
this coefficient different from zero along the arc C, so that the 
solutions of the Jacobi equation will have no singularities on 
the interval X\x%. Suppose now that there is a solution u of 
Jacobi's equation not identically zero but vanishing at x\ 
and at a second point xs between x± and x2. Then in the 
first place the value u'(x%) is different from zero, since the 
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only solution of Jacobi's equation vanishing with its derivative 
at any point whatsoever is rj = 0. Furthermore the function 
rj(x) defined by the conditions 

rj (x) = u(x) for x\ ^ x ^ #3, 

rj(x) = 0 f or x$ ^ x ^ x2, 

is an admissible function rj. It is easily provable that rj(x) 
gives the second variation its minimum value zero, for with 
the help of an integration by parts and properties of the 
homogeneous quadratic function 0 we have 

J"(0) = 2 I Q(x, u, u')dx = I (utiu + u'Q,u>)dx 

= utiu' + I u ( tiu — J-Qti' ) dx = 0. 

The curve defined by rj(x) can not, however, be a minimizing 
curve for the second variation since it has a corner at x% 
at which 

M < * - °) - M * 3 + 0) = fy'y'u'l* # 0. 

Since rj(x) gives the second variation the value zero and does 
not minimize it, we conclude that there are variations rj(x) 
giving the second variation a value less than zero, and it 
follows at once that the original integral J can not be mini­
mized by the arc (7. We have then the result that if J{C) 
is a minimum there is no solution u 4s 0 of Jacobi's equation 
vanishing at Xi and at a second point #3 between x\ and a?2. 
This is, however, exactly Jacobi's necessary condition, since the 
conjugate point to A(x = x\) is the point A\x = £3) corre­
sponding to the first zero #3 of u(x) after x\, and we see that 
arcs AB containing A' between A and B have no longer the 
minimizing property. 

It is to be noted that the proofs of the necessity of the 
Legendre and Jacobi conditions just described are made under 
the hypotheses usually presupposed when these conditions are 
deduced from the second variation, and I wish further to 
call attention to the fact that they do not involve any trans­
formation of the second variation except the very simple one 
used in showing that the curve rj(x) makes the second variation 
vanish. The Euler differential equation condition, the corner 
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point property, and the Weierstrass ^J-function condition, are 
properties of a minimizing arc which should be developed 
early in every complete discussion of the problem, and when 
we apply them to the second variation we are not using new 
methods peculiar to this later part of the theory. The effec­
tiveness and economy of the methods just described are not as 
important for the simple case, which has been discussed in 
some detail, as they are for the more complicated problems of 
the calculus of variations. D. M. Smith* has, however, ex­
tended these methods so that they can be applied to the 
problem of Lagrange, and Miss G. A. Larewf has done the 
same for the problem of Mayer. I have myself modified them 
for problems in parametric form in higher spaces.J In these 
latter cases a transformation of the second variation analogous 
to that of Weierstrass for the plane seems now entirely un­
necessary. 

But it has seemed to me for some time that the theory of the 
second variation in its entirety could be viewed with success 
from the standpoint of the minimum problem of the second 
variation, a minimum problem within a minimum problem, 
so to speak, and I have recently satisfied myself that this is 
so for the Lagrange problem as well as for the simpler cases. 
A one-parameter family of extremals of the second variation 
simply covering a field in the œrç-plane is a family of solutions 
of Jacobi's equations of the form 

(10) rj = an (xi ^ x ^ x2), 

where u is a particular solution of the Jacobi equation which 
does not vanish on the interval X\x2, and a is the parameter 
of the family. The slope function ir(x, rj) for this field, 
expressing the slope of the extremal of the field through the 
point (x, rj) and corresponding to the slope function p(x, y) of 
the general case, is found by solving the last equation for a 
and substituting in the expression 

TT(X, r)) = au' = rj — . 

* " Jacobi's condition for the problem of Lagrange in the calculus of 
variations," Trans. Amer. Math. Society, vol. 17 (1916), p. 459. 

t " Necessary conditions in the problems of Mayer in the calculus of 
variations," Trans. Amer. Math. Society, vol. 20 (1919), p. 1. 

t" Jacobi's condition for problems of the calculus of variations in para­
metric form," Trans. Amer. Math. Society, vol. 17 (1916), p. 195. 
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If J"(H) represents the value of the second variation for an 
arbitrary function 77(0;) vanishing at x\ and #2, and if J "(Ho) 
is the corresponding value along rj = 0, then the formula (8) 
of Weierstrass when applied to the second variation takes the 
form 

J"(H) - J"(Ho) 

= I {Q(x, rj, rj') - Q(x, rj, TT) - (77' - T)Q^(X9 r), ir)}dx. 

But since J"(Ho) = 0, an application of Taylor's formula to 
the integrand on the right gives 

J"{H) = £ fyVW - irfdx = f fvV ^'^'Jdx. 

This is precisely the form of the second variation found by 
Jacobi. From it we conclude at once that the second variation 
is positive or zero for every function rj vanishing at x\ and x%, 
provided that fyfy>% > 0 along the original arc C, and that a 
solution u of Jacobi's equation exists which is different from 
zero on the interval #i£2. 

The analysis in the case of the Lagrange problem is of course 
more complicated. The one-parameter family (10) of the 
field for the second variation is here replaced by an n-parameter 
family 

(11) 77»- = aiUn + • • • + OnUin (i = 1, "',1l), 

for which the columns of the matrix | \uik\ \ belong to a 
conjugate system of solutions of the Jacobi equations. The 
slope functions Ti(x, rj) of the field are found by solving the 
last equations for the parameters ai and substituting them in 
the expressions 

Ti — aiUn' + • • • + OnUin (Î = 1, '",*>), 

where Uih is the derivative of u^ with respect to x. The 
Weierstrass formula gives at once the value 

J»(H) = rZF,MW - *<)M - ^)dx 

for the second variation, where F has the significance before 
explained, and where the differences rj/ — 7r» turn out to 
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have the values 

t\i - Ti = Wi = T — r Xi(v) 
I Wtfc I 

in terms of the functions Wi of Clebsch and the determinants 
Xi(v) of von Escherich. These latter functions have hitherto 
appeared in somewhat artificial fashion in the theory and it 
seems to me interesting to have this very simple interpretation 
of them in terms of the slope functions of the field. 

The von Escherich fundamental formula which I mentioned 
above* may be expressed by the equation 

ik i 

where the symbols a / represent the derivatives of the solutions 
ai of the equations (11) with respect to x when the variables 
rji are thought of as functions of x, and the coefficients \pi are 
bilinear expressions in the elements of two sets of functions 
(yi, •", Vn;t Mb •••>/%) and (%, • -, uni; <ru, - -, <rmi), the 
latter of which is the system of solutions of Jacobi's equations 
to which the column uu, • • •, uni of the matrix | | une \ \ belongs. 
If the set (77; ju) is also a solution of Jacobi's equations then 
each of these coefficients is a constant. For this special case 
I have already published a prooff of the von Escherich 
formula, but the one which I have mentioned here is quite 
general and simpler than my earlier one. 

Finally the von Escherich theory of conjugate systems of 
solutions of Jacobi's equations is identical with the theory 
of Mayer fields for the minimum problem of the second varia­
tion, and the methods which Hahn devised for relating con­
jugate systems to the Mayer fields of the original minimum 
problem can be used to construct the various types of conju­
gate systems which von Escherich considered. 

In conclusion I may say that the methods suggested above 
seem to me of considerable assistance in developing and under­
standing the theory of the calculus of variations. For in the 
first place they enable one to retain the advantages of the 
second variation, in deducing the necessary conditions anal­
ogous to those of Legendre and Jacobi, without becoming 
involved in elaborate transformations. In the second place 

* Von Escherich, loc. cit., Mittheilung IV, Section XXIII, formula (9). 
t " A note on the problem of Lagrange in the calculus of variations/ ' 

this BULLETIN, vol. 22 (1916), p. 220. 
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they may give some satisfaction to those who have delved in 
the theory of those transformations, since they make the 
transformations appear, not as separate chapters of the anal­
ysis, but as special applications of formulas now well estab­
lished in other parts of the theory. It is even possible to 
make a satisfactory and not over complicated sufficiency 
proof for a weak minimum, without the use of the Weierstrass 
notion of a field. For the Weierstrass formula can be proved 
directly with some ease for the second variation when once it 
has been seen to hold true for a conjugate system of solutions 
of Jacobi's equations. It is not strange that the second vari­
ation has not been attacked from this standpoint before in 
spite of the fact that in my recent review of the literature 
I have found several suggestions which might have instigated 
one to attempt it. The real reason is, I think, that the ad­
vances of Weierstrass and Hubert were published after 1900 
and about the time that Kneser found his envelope theorem. 
The tendency since then has been to discard the theory of 
the second variation in favor of the more geometrical theory, 
but the experiment, so far as I know, has not been completely 
successful. 

THE UNIVERSITY OF CHICAGO, 
December, 1919. 

GROUPS GENERATED BY TWO OPERATORS OF 
ORDER THREE WHOSE PRODUCT IS OF 

ORDER FOUR. 

BY PROFESSOR G. A. MILLER. 

(Read before the American Mathematical Society December 30, 1919.) 

§ 1. Introduction. 

IT is known that the only groups which are completely 
determined by the orders of two generators and the order of 
their product are the dihedral groups and the groups of 
movements of the five regular solids known to the ancients. 
In all other cases two generators which are not restricted 
except as regards their orders and the order of their product 


