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18. Let In'* In"> In" be the three points of inflection of Tn* 
The lines 0In', 0In", 0In

r" meet every cubic of the pencil Y 
in three collinear points (14a), and all these points are points 
of inflection (17). Consequently: The points of inflection of 
all the cubics of the pencil T lie on three straight lines concurring 
in the double point. 

19. From (18) and (146) it follows: The inflectional lines 
of the cubics of the pencil V form a pencil having its vertex on 
the basic line. 

I t may be added that this vertex is the harmonic conjugate, 
with respect to the couple A, Ah of the trace on ABC of the 
locus of the tangentials of A (4). 

UNIVERSITY OF OKLAHOMA, 
October, 1919. 

DEFINITION AND ILLUSTRATIONS OF NEW 
ARITHMETICAL GROUP INVARIANTS. 

BY PROFESSOR E . T. B E L L . 

1. ARITHMETICAL instances of groups are still sufficiently 
uncommon to make any new occurrence a matter of interest. 
Many significant group concepts have, of course, been implicit 
in arithmetic since at least the times of Euler and Gauss, 
notably in the theories of power residues, the automorphics 
of binary quadratic forms, and principal genera. More re­
cently Miller has directly applied groups to quadratic residues 
and other topics. 

This note contains the definition and a few illustrations, 
shorn of algebraic and other details, of certain group invariant 
relations for arbitrary integers, which are believed to be funda­
mentally distinct from previous group phenomena in arith­
metic. These relations are genuinely arithmetical in that 
they concern only integers, and they may legitimately be 
called group relations because they exist only in reference to 
groups. 

The object of this note is merely to call attention to these 
invariants by exhibiting a few of the simplest; and as several 
preliminary definitions are required—the subject being new— 
developments and less obvious examples may be left to another 
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occasion. Although the illustrations have purposely been 
chosen of a very simple nature, nevertheless they sufficiently 
illustrate the general character of all such results, and notes 
on their analytical origins have been included. We point out 
here, however, that the elliptic, abelian, and allied theta 
functions offer inexhaustible mines of such invariants for 
systems of any number of quadratic and bilinear forms and 
for groups of any degree, and that applications of these in­
variants to numerous arithmetical problems are immediately 
apparent. For example, it will be clear from this note that 
any relation between theta functions and their allied quotients, 
provided only that it involves the arguments and is not merelv 
an identity between constants, gives rise to at least one singular 
monad invariant, and therefore to several dyads, triads, etc. 
Regarding applications, the possible fruitfulness of the in­
variants will be evident on remarking that in any invariant 
the fc-ads may be replaced by arbitrary functions of the same 
parity as the &-ads and belonging to the same group; so that 
each k-ad relation implies an infinity of specialized arithmetical 
theorems. Last, the whole method is obviously applicable 
to functions other than the thetas as a basis, provided they 
are expansible in Fourier series. But so far the most inter­
esting applications have arisen by way of the theta functions. 

2. The sets of independent variables, in which order is 
essential, (xi, #2, • • -, %a)> (~~ #i> — #2> • • •> — %a), are denoted 
by by J, — £ respectively. Consider (r + s) such sets, all 
the variables being independent, 

£i ^ \£il, %i2> ' ' ' y %iaj)9 ty = *> ") * * ' > ? ) , 

is = (yn> y,2, -•> yjbj), (j = 1,2, • • -, s), 

united in a symbol Z, in which order is essential, 

Z S (£ b £2, • ' -, %r\Vh V2, ' * -, Vs), 

which is called an (r + «?)-ad, of parity and order 
r s 

(ai, a2, • • -, ar\bu b2, • • -, b8), a> = 52 a* + 53 &y 

respectively, and which has the following properties: Z exists 
and is uniquely determined when all the variables take integral 
values $ 0, remains equal to itself when any § is replaced 
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by its negative, changes sign for a like replacement of any rj, 
and vanishes when all the variables in any rj take zero values 
simultaneously. Likewise, by a few changes in the wording, 
we define the (r + 0)-ad Z' and the (0 + s)-ad Z", 

Z' — (êl* &> * ' 'y £ r | ) , Z" = (\rji, t)2, • • •, 7}s), 

of the obviously corresponding parities and orders (ai, «2, 
• •, ar | ), Sa»-, etc. If r + * = k, r + * > 0, we shall speak 
of Z, Z', Z" simply as &-ads. 

All the formal laws of algebraic addition and subtraction 
are to hold for fc-ads; and two fe-ads are equal when and only 
when it is possible, by legitimate changes of sign in accordance 
with the foregoing definitions, to reduce them to identically 
the same form, the signs prefixed to the whole fe-ads being 
included. Thus (2, 3 | ) , ( - 2, 3 | ) , (2, - 3 | ) , ( - 2 , - 3 | ) , 
are equal; (2, 31 ) and (3, 21 ) are unequal, as also are ((2, 3) | ) 
and (2, 3 | ) ; ( |(2, 3)) = - ( | ( - 2, - 3)); and 

(1, ( - 2, 0, 3) | ( - 4, 0), 5) = (1, (2, 0, - 3) | ( - 4, 0), 5) 

= - ( - 1, ( - 2, 0, 3) | (4, 0), 5) = (1, ( - 2, 0, 3) | (4, 0), - 5). 

By the variables of a &-ad we shall mean the variables 
within the sets £, rj, and not the £, rj which will be called the 
sets of the &-ad.* If each set contains but one letter, the 
sets and the variables coincide. 

3. Let 1, Su s2, • • •, st= g denote a set of substitutions on 
some or all of the variables of a fe-ad Z, and write (siZ) for 
the result of applying Si to Z. The Si fall into two categories : 
(A), substitutions which either permute the variables of Z 
within the sets, interchanging no pair of variables from dif­
ferent sets, or permute the sets £ among themselves and the 
sets rj among themselves, interchanging no £ with any rj; 
(J5), all others. If all the substitutions of a group G belong 
to {A), we call G an ^4-group, ("for Z" being understood). 
In this note we consider only ^-substitutions and ^4-groups, 
as the consequences are simpler than those arising from (B). 

If g is any ^t-group on the variables of Z, we shall denote 
by Zg any &-ad of the same parity as Z, and on the same 
variables, which belongs to g. As a simple example, the 
following sum is a (1 + 0)-ad of parity (4|) and order 4: 

* This is emphasized because in one application of the theory the 
£, t\ behave as single variables, not as sets, and are then treated as the 
independent variables. 
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(x\y, 0, w)) + (x\w, (z, y)) + (y\z, (w, x)) + (y\x, (w, z)) 

+ (z\w, (x, y)) + (z\y, {x, w)) + (w\x, (y, z)) + (w\z, (y, x)), 

which obviously is invariant for an octic group g on x, y, z, w 
and which therefore is a particular monad of that whole class 
any member of which is denoted by ((#, y, z, w)\)g. As 
another example, if X, /x denote integers different from zero, 
and X is even, fx odd, the function 

3 % " - z*1) + y*(z» - x") + zk(x» - y") 

belonging to g = 1, xyzf xzy, is of parity (|3) in (x, y, z) and 
is therefore a particular ( | (x, y, z))° for this g. Last, recalling 
a common notation, we denote by [«1878], [«1878]' the products 
of any four elliptic theta functions âa(x), etc., in which the 
variables are, for the order in which the functions are written, 
x, yf z, w and x', y', z'y w' respectively, where 

2s^x + y + z + w, 

x' = s — x, y' = s — y, z' = s — z, w' = s — w; 

and we have either of the equal sums 

[0123] + [1032] + [2301] + [3210], 

[0123]' + [1032]' + [2301]' + [3210]' 

a particular (\(x, y, zy w))° for g the four group 1, xy-zw, 
xz - yw, xw • yz. We interpret this example arithmetically later. 
Although all of these are for monads, it is not difficult to 
devise similar examples for dyads, triads, etc. We pass over 
these, since from invariant relations concerning monads may 
be inferred others involving dyads, etc., as pointed out in § 12. 

4. Consider a &-ad Z whose variables are z\, Z2, ••• ,£„, 
and an A -group g = 1, S\, s2, • • -, sr on some (or all) of these 
variables, and let 

8: (si, «2, • • -, *J = (zi(i), *2{i\ • • ', zj% (i = 1, • • -, t) 
denote a system of t integral values of the set (21, z2, • • -, zw); 
viz., each Zj{i) is an integer § 0, and in the typical identity 
between sets just written, Zj = Zj(i) (j = 1, 2, • • -, co). Re­
place Zj by Zj(i) in Z, (j = 1, 2, • • -, co), multiply* the result 

* From § 2 the meaning of cZ, where c is an integer, is Z + Z + • • • 
+ Z (c terms) if c > 0; it is - Z - Z - • • • - Z if c < 0; and cZ = 0 
when c = 0. 
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by an integer c», form the sum of all such products for i = 1,2, 
• • •, t, and denote the result by f8cZ, or by fcZ where S is 
understood. In the same way are defined fc(siZ), fcZg, 
starting from (siZ) and Z° respectively. In these sums the 
substitutions Si and those of g must obviously be applied 
before the variables of Z are replaced by the integers of S. 

5. In all that follows there is a radical distinction between 
special and general sums of the sort just defined. In a special 
sum the integers 2 /^ are constants, 0, — 2, 5, • • -, etc.; in 
a general sum they are variables. Through several of the 
2y(i) having equal absolute values we frequently find fcZ = 0 
for Z special, but fcZ =j= 0 f or Z general; and so in the other 
cases. Henceforth all ƒ sums are general. 

6. Bearing in mind that the ƒ are general, we readily see 
that relations 

fcZ = 0, JcisiZ) = 0, fcZ* = 0, 

must be mere trivial identities until the integers of S are in 
some way restricted. Hence we next impose conditions upon 
S, emphasizing again, however, that within the restrictions 
the integers of S are variables. For example let fa, yi, z%, Wi), 
(i = 1, • • -, h) represent the totality of sets of four integers 
> 0, the sum of whose squares is equal to an odd integer m, 
and choose 

8: fa, 22, «s, 24) = (xit yh zi9 w{) (i = 1, • • -, A). 

Then in this case our sums are to refer to 8 for m an arbitrary 
odd positive integer; and we shall seek for this S a relation 
such as fc(fa, 22, 23, Zi)\)° = 0, valid for any odd positive 
integer whatever. 

7. I t follows at once from the definitions that if g is an 
A -group, and Si a substitution of (A)> then the first of the ƒ 
relations in § 6, wherein 8 is now restricted, implies each of 
the others. For Z° is a special case of Z\ and fcfaZ) = 0 is 
fcZ = 0 with a changed notation. E.g., if Z s= (fa, 22,23,24) | ) 
as above, and Si = 2i23-2224, fc(faf 22, 23, 24) |) = 0 becomes, 
on applying si, fc(fa, 24, 21, 22) |) = 0, which abstractly is the 
same thing; and similarly for yi-substitutions, which inter­
change sets. Clearly the like does not hold for J5-substitu-
tions. 

Suppose now that fcZ = 0. Then this implies fcZ9 = 0, 
as remarked, and this is an invariant relation for the ^4-group 
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g. We shall call this an improper invariant, it being included 
as a very special case in another relation, fcZ, between &-ads 
on the same variables. We proceed to define proper inva­
riants of S for g, stating the definition for the general case. 
These express essential invariant properties of S; the im­
proper, considered as invariants, are trivial, the relations from 
which they follow being more general. 

8. Let Fi (i = 1, • • -, k) denote a system of k algebraic 
forms, not necessarily all of the same orders and degrees, 
with integral coefficients, and consider all the representations 
of a fixed arbitrary integer n in the system 2, 

2 : Fi=n (i = 1, ••- ,&). 

Consider first only one of the equations in 2 ; say it is 
F(wi, w2, - • •, Wh) = n, and suppose it to have precisely t 
distinct solutions.* Let 

(Wi) s W > , w2v, • • -, wh&), (i = 1, 2, • • -, t), 

be these solutions. From the integers in one of them, (wi), 
construct co linear homogeneous functions X with constant 
rational coefficients, some of which may be zeros, 

Xp
(i) = aplW!(i) + ap2W2(i) + • • • + ctphWh

(i\ (p = 1, 2, • • -, co). 

With the notation at the beginning of § 4 choose 

(ai«>, *,«>, • • -,*„«>) s (Xx«>, X2«>, • • -, X.«>), (f = 1,2, . - . ,< ) ; 

make this substitution in /cZ, fcfaZ), fcZ0 as there (§ 4) 
defined, and denote the results by 

fc\ fc(Si\), fc\°. 

Returning to the system 2 , we proceed similarly with all of 
its equations, forming X's for each, the coefficients in the X's 
for the several forms Fj not necessarily being the same, and 
getting finally the sums 

ffi«>\9 /je®(8i\), ffi^W, (j = 1, • • •, fe), 

where the suffix j signifies that the sums belong to the par­
ticular equation Fj = n, and j in c0 ) distinguishes the con­
stants in the several ƒ sums. Next sum each of these for 

* It is immaterial whether t is finite or infinite. In this note we illus­
trate only invariants for S's having a finite number of solutions. 



1920.] NEW ARITHMETICAL GROUP INVARIANTS. 217 

j = 1 to h, that is, over the entire system 2 , and write the 
results 

Z ffiU>\, Z fiCV>(8i\), Z Ij*»*, 
j=l j = l .7=1 

= hcA, hc(siA), J%cAg, 

respectively, or the same with the omission of 2 where it is 
understood. 

Last, let g = 1, 8\, • • -, sr be a group whose substitutions 
are unrestricted with respect to (A), (B) on some or all of the 
variables of the Z from which A is derived as above. Then, 
if it be possible to choose the coefficients of the X's so that 
fc(sA) =f= 0 for at least one* substitution s, which may be the 
identity, of g, while fcA° = 0, the latter relation is defined 
to be a proper ^-invariant relation, or simply ^-invariant, of S. 

9. I t can be shown without difficulty that the first of the 
following implies the second, 

fcA + J2 MsiA) = 0, fcA* = 0, 
t=i 

all the notation being as in § 8. Indeed this is an immediate 
consequence of the definitions, and we may omit a formal 
proof. Again if y is any subgroup of g, all of whose substitu­
tions not in 7 belong to (A), it is easily seen that of the follow­
ing the second is implied by the first, 

fcAy = 0, fcA9 = 0. 

The like does not hold if any substitution of g not in y belongs 
to (B). We shall say that the ^-invariant is contained in the 
y-invariant; and writing these for the moment Ig, Iy respec­
tively, symbolize the inclusion thus, Ig > Ir If now Iy > ISf 

Iè > Ij8, • • -, Ia > Ie , we have 

Ig > Iy > I8 > If> > • • • > J . > 7e, 

and clearly any such series of inclusions contains only a finite 
number of terms. If Ie is the last term, viz., if there is no 
group f different from e such that Ie > 1$, we call Ie the 
reduced invariant of Ia, 1$, •••, Ig. Henceforth invariant 
means reduced invariant. When e is the identity, I e = Ii is 
called a unit. 

* If g is an A -group this implies fc(sA) =J= 0 for every s of g. 
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10. With the notation of § 8, let 
k 

E / y ^ X ^ A c A s /cA = 0 

be a unit; and let 1, <ri, O-2, • • •, o-̂ -i denote a set of substitu­
tions belonging to (A) on the variables of the Z from which 
this 7i is derived. Write fcA = 0 in full, 

Ac(1)X + /2c
(2)X + • • • + /*c<*>\ = 0, 

and put 

ƒ SE /lC(i>X + /aC^CcnX) + • • • + /*c(fcV*--iX). 

We cannot infer 7 = 0 , that is, I = 0 is not a unit invariant; 
but if the cr are substitutions of an ^4-group g which are not 
all contained in a group of order lower than that of g, then 
clearly I = 0 is a #-invariant (proper and reduced) of S. 
We shall call l = 0 a singular ^-invariant of 2. Several of 
the JPJ in 2 may be identical. For such 2 the unit invariant 
fcA = 0 appears in the form 

fiC^X + /2c
(2)(*iX) + • • • + /*c<*>(**-iX), 

where the sj are substitutions on the variables of Z. As 
before, we get a singular (/-invariant J = 0, where 

J = / IC(DX + /2CW(*icnX) + • • • + /*cW(^KT^iX), 

on choosing $io*i, s2cr2, • • •, Sk-i<rk-i so that they do not all 
occur in a group whose order is lower than that of g. 

11. Taking any ^-invariant for S as a primitive, we deduce 
from it another ^-invariant called the derivative of the primi­
tive, as follows. Let Z be the fc-ad from which, as in § 8, 
fcAg = 0 is constructed, and let fi, f2, •••,£*? be the sets of 
Z. Call ƒ($%•) an even or an odd function of f » according as 
ƒ(?<) = ƒ ( - f<) or /(r<) = - ƒ ( - f.-). In each set to the left 
of the bar in Z replace each variable by an arbitrary odd or 
even function of the set in which it occurs, and in each set 
to the right of the bar in Z replace each variable by an arbitrary 
odd function of the set in which it occurs, getting thus a new 
&-ad Z' which is of the same parity in the variables of Z as is Z. 
Starting from Z' construct the sum fcA'0 in precisely the same 
way that JcA° is constructed, viz., by substituting for the 
^-variables in Z the X's determined by 2, and summing. 
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Then clearly the first of the following implies the second, 
which is called the derivative of the first, 

fcA* = 0, Jeà.'9 = 0. 

Clearly a primitive is neither more nor less general than its 
derivative. Nevertheless a derivative frequently suggests ap­
plications to specific problems more readily than does the 
primitive. 

12. We write ƒ((>, y) \)g = 0, ƒ((#, y, z) \ )g = 0, etc., under­
standing that the ƒ sums refer to all (x, y), (x, y, z), • • -, the 
x, y, z, • • • in any case being X's determined as in § 8 for a 
system S. 

The number of implications increasing rapidly with the 
order of the &-ads, we shall write out the complete sets for 
orders 2, 3 only.* 

Consider now the following tables. 

(I) ((*,») | ) : (x,y\), {\x,y). 

(II) (\(x,y)): (x\y), (y\x). 

(III) ((*,y,*)|): (*,(y,*)|), (\z, (y,z)); 

(y, (*,x)\)> (\y> (*> x)); 

(*, (%>y)\)> ( k (x>v))i 
(x, y,z\), (x\y, z), (y\z, x), (z\x,y). 

(IV) (\(z,y,z)): (x\(y,z))9 ((jf9z)\x); 

(y\ te,*)), ((*,*)\y); 
(z\(x,y)), ((x,y)\z); 

(\x>y,*)> (y>x\x), (z,x\y), (x,y\z). 

The meaning of these will be seen from the first row of (III). 
It is: ƒ((&, yy z)\)g = 0 implies ƒ(&, (y, z)\)° = 0 and 
S(\x, (y, z))° = 0; and inversely the last two together, but 
neither singly, imply the first. Similarly for the pairs and 

* A systematic rule for deducing all the implications for order k will be 
evident on reading § 9, p. 319, of a paper in this BULLETIN, vol. 25, 1919. 
A proof of the general theorem for units is given in the Introduction to 
Part 1 of " Arithmetical paraphrases," presented to the Society, Oct., 
1918, and the result for Ig, g =|= 1, follows at once from this. § 13 is also 
proved (in much more general form) in the same place. 
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set of four in the remaining rows of (III) ; likewise for (I)-(IV). 
For a monad invariant of parity (4|), J((x, y, z, w)\)g = 0 
implies f(x, (y, z, w) \)g = 0 and f(\x, {y, z, w))g = 0; these 
together imply the original; and from (I)-(IV) the complete 
set of implications may be written out for order 4, parity (41 ). 
For f(\(x, y9 z, w))9 = 0 the first pair of implications is 
f(x\(y, z, w))° = 0, ƒ((y, z, w) \x)g = 0; and the procedure 
for monads of parities (k\), (\k) is evident. By the notation 

ƒƒ((*, y,*) I ) ' = o 

we shall mean the complete set of eleven invariants written 
down from (III) by replacing ((#, y, z) |) in f((x, y, z) \)g = 0 
by each of the eleven dyads and triads in (III), and similarly 
for order k. 

13. I t remains to indicate the connection of these invariants 
with the theta and allied functions. From any identity be­
tween such functions in the variables a, /3, • • •, y, we deduce 
trigonometric identities in a, /3, • • •, y, of which the following 
is one type, 

2 c cos (xa + 2/£ + • • • + zy) = 0, 

the summation referring to the constants c and the integers 
x, y, • • -, z, the latter being the X's of § 8. I t can be proved 
without difficulty, but at some length (cf. § 12, footnote) 
that this trigonometric identity implies fc((x,y, • • -, z) \) = 0. 
If the identity involves sines instead of cosines, we get 
7(1 (x> Vy • —, %)) = 0. Groups enter either ab initio in the 
irreducible form of the theta identity, giving rise to trigo­
nometric identities that are invariants under substitutions 
on the a, /?, • • •, y, or in the derivation of singular from unit 
invariants as already indicated. 

The following examples, the last of which is numerical, 
illustrate the principal definitions. 

14. (i) As a first example let S (§ 8) be the single equation 

2m = h2 + Z2
2 + m3

2 + m4
2, 

wherein m is odd, l\9 l2 even § 0, m3, m4 odd < 0 ; write 
( I (x, y, z, w))g = {x, y, z, w) where g is the four group in § 3; 
and 

2a = h + l2 + m3 + m>A, A«: = cr — Jif m == a — /^. 
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Then the theta identity in § 3 leads to a trigonometric identity 
(on equating coefficients of q2m) which, as indicated in § 13, 
paraphrases by means of §§ 13, 12 into the set of invariants 

f/Uh, Ms, mh l2) — {Xi, /As, M4, X2}] = 0. 

(ii) Similarly, from one of Kronecker's forms of the " equa­
tion of three terms/ ' * f or g = 1, yzw, ywz, and (Or, y, z, w) \)° 
= {x, y, z, w) we get when 2 is the equation 

4n = mi2 + m2
2 + m3

2 + m4
2, 

where mly m2, m3, m4 are odd < 0, on writing 2JJ, = mx + m2 

+ m3 + m4, the invariants 

ƒƒ(— iy{mi + m2, mi — ra2, m3 + m4, ra3 — m4} = 0. 

(iii) From one of Briot and Bouquet's forms of the same 
equation,f we find for the same 2, g, the invariants 
ƒƒ(— l)a{mi + ra3, m2 + m3, mx + m2, ra3 + m4, m3 — ra4} = 0, 
where now ((u, v, y, s, w) \ )° = {w, fl, y, z,w}; a is either /x or cr 
and these are 

2/x = mi + m2 + m3 + m4, 2cr = m3 + ra4. 

(iv) From the same source, for 2 as in (i), and g, {u, v, y, 
z, w] as in (iii), 

2p = li + l2 + ra3 + m4, 2(7 = m3 + m4, 2J> + 1 = h + m4; 

ƒ ƒ ( - l)*3 {/i + m3, Z2 + m3, /i + Z2, m3 + m4, m3 - ra4} = 0, 

where /3 is p, a* or z>. 
(v) From the same source, for 2 the system of three equa­

tions, m odd, 

2m = ^i2 + vi2 = x2
2 + u2

2 + v2
2 = xz

2 + yz2 + Uz2 + vz2, 

Ui, vi, u2i v2, u3y Vs odd < 0, x2, xz, yz even < 0, and g, { } 

as in (iii), 2fXi = Ui + A*, we find 

ƒ ƒ [ ( - l)M{wi, 0, wi, «x, - vi] 

+ ( - l)M3{2/3 + ^3, #3 + 2/3, #3 + uz, yz + v*, yz — ̂ 3}] 

+ ƒƒ(— 1)M2[{^2, «2, ^2 + u2, v2, — fl2} 

+ {#2 + u2y x2y u2, x2 + v2y x2}] = 0. 

* Odtfe, vol. 102, p. 262 (F). 
t Théorie des Fonct. ellip. (éd. 2, 1875), p. 488. 
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(vi) The identity, with <px(x, y) = ûx'êi{x + y)/&o(x)&o(y), 

#o(*)0o(y)0o(*)*>i(3, y) = *iMz)Mx + v), 
on expanding <pi(x, y) in a Fourier series and paraphrasing as 
outlined in (i), gives invariants for another kind of 2 , viz., 

2m = xi2 + yx2 + zx
2 + . 2uxvi = x2

2 + u2
2 + v2

2, 

where Xi, yi9 zi, x2 are even $ 0, uif vi, u2, v2 odd, U\, v\ > 0, 
u2, v2 < 0; 

/ / [ 4 ( - lYix! + m, zu Vi + vi] + ( - Win*, x2y u2}] = 0, 

where {x, y, z] = (| (x, y, z))g, g = 1, xyz, xzyf and 

2a = xi + yi + zu 2/3 = ^2 + ^2 + ^2. 

(vii) From (vi) we get, in the same notation except g, the 
following invariants for g the symmetric group on x, y, z, 

/ / [ 4 ( - iy{Xl + uu Vx + vl9 ai} + ( - iy\u2, u2, x2}] = 0. 

(viii) Putting, for the m's odd < 0, the Ts even $ 0, 

Mi = mi + m2, M2 = ^ 3 + ^ 4 , M3 = ^ 3 — ^ 4 , 

Xi = Zi + 2̂? X2 = Z3 + h> X3 = Z3 ~~ Z4, 

JU4 = mi + m3, ^5 = m2 + m3, 

X4 = '1 + I3, X5 = Z2 + 4, 

we get (from the same source as (iii)) singular invariants for 
the system 

4n = mi2 + m2
2 + m3

2 + m4
2 = h2 + h2 + k2 + h2, 

2fx = mi + m2 + ms + m4, 

on writing {x, y, z, u, v} s= ((#, y, z, u, v)\)g, as follows: 

ƒƒ[(— 1)M{M3, M2, Mb M4, MO} + {X3, X4, X2, Xi, X5} 

— {X2, X3, Xi, X4, X5}] = 0, 

for g the octic group generated by xz, yu; for g the tetrahedral 
group generated by xyz, xy-zu, a precisely similar ƒƒ with the 
suffixes of the respective { }, in this order, 23145, 13425, 
23145; for g the octahedral group generated by xy> yzu, the 
like with suffixes 21345, 32415, 23145; and for g the icosahedral 
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group generated by xy-zu, xzv, the like with suffixes 21435, 
21543, 23145. 

(ix) As a numerical example, we take the invariant, from 
the same source as (vi), f or g = 1, xy, and {x, y] = (| {x, y))9, 

ƒ ƒ [a(- mxi+zi, yi}+(- D* { ^ Y ^ + * , z2}] = 0; 
2 : 2m = 2#i?/i + 4si2 = #22/2 + s2

2, 

m odd, #1, î/i, #2, y2 odd > 0, 21 arbitrary $ 0; s2 odd < 0; 
X = 21, 2JJL = 2/2 + s2. Let m = 5; then all the solutions of 
2 are 

(xi, yi, *i) = (1, 5, 0), (5, 1, 0), (1, 3, ± 1), (3, 1, ± 1); 

(«2, 2/2, *2) = (1, 9, ± 1), (9, 1, ± 1), (1, 1, ± 3), (3, 3, ± 1). 

Whence, substituting in the left of the invariant, and dropping 
the ƒƒ, we get 

2[{1, 5} + {5, 1} - {3, 3} - {5,1} - { - 1, 3} - {1,1}] 

+ [ - { - 3, 1} + {1, 1} - {5, 1} + { - 5, - 1} 

- { - 1, - 1} + {3, - 1} + {3, 3} - { - 3, - 3}]. 

Since {x, y) belongs to g, {x, y) = {y, x}; hence the sum 
reduces to 

[{1, 5} + { - 1, - 5}] - [{3, 3} + { - 3, - 3}] 

- [ { - 1, 3} + {1, - 3}] - [{1, 1} + { - 1, - 1}]. 

By § 12 (II) this should vanish when {x, y} is any one* of 
(\(x> y))> (x\y)> (y\%) each belonging to g. Taking the first 
of these we have { - 1, - 5} = (| ( - 1, - 5)) = - (| (1, 5)), 
so that the first [ ] = 0; similarly in this case for the others. 
Verifying for (x\y), we have (— 11 — 5) = — (115); hence 
the first [ ] = 0; the third = ( - 113) + (11 - 3) = (113) 
- ( 1 

(1 
3) = 0; the fourth = (111) + ( - 11 - 1) = (111) 
1) = 0. The verification for (y\x) is similar. 

UNIVERSITY OF WASHINGTON. 

*The cases of (x\y), (y\x) are trivial in this instance, because it is 
readily seen that each vanishes under the given conditions for all values 
of xy y. 


