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conditions. In the present paper he extends this method to 
double series, and discusses the application of the method to 
convergent double series. It is found that the summation 
functions of the familiar methods of Cesàro, Holder, Borel, 
LeRoy, Riesz, Vallée-Poussin, etc., can be used in building up 
summation formulas for double series. 
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1. Introduction. 

A CIRCULAR curve contains the circular points at infinity, 
or the isotropic points of the plane, as single, or as singular 
points. A plane isotropic curve is defined as a curve, all of 
whose infinite points are absorbed by the isotropic points. 
The equation of such a curve, which is necessarily of even 
order, in cartesian coordinates may be written in the form 

(1) (x* + tf)k+<p(x,y) = 0, 
in which <p(x, y) is a polynomial of degree 2k — 1 at most. 

If P(§, rj) is a fixed point and A(x, y) any other point so 
that PA = p, and 6 the angle between PA and the posi­
tive direction of the #-axis, then the coordinates of A are 
x = £ + p cos 0, y = r\ + p sin 0, and satisfy equation (1) 
when A is on the curve. The condition for this is an equa­
tion of the form 

(2) p2fc + oV*-1 + «2P2fc~2 + • • • + <*2*-iP + a2k = 0, 

in which a\, a2, • • •, o^k-i are coefficients, which, in general, 
depend on £, 77, 6 and the coefficients of (1); while a2/b is 
independent of 6. The roots pi, p2, • • •, p2& of (2) are the 
distances PAi (i = 1, 2, 3, • • -, 2k) of the points of inter-
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section Ai, A2, • • -, A2h of the transversal through P , including 
an angle 6 with the positive part of the a>axis. Evidently 
the product 

(3) PlP2 • • • Plh = <*2k 

is constant for all transversals through P . 
This constant product is called the power of the point P with 

respect to the isotropic curve. This is one of the principal 
properties* of an isotropic curve. In fact an isotropic curve 
may also be defined by this property. In this paper I shall 
establish the necessary and sufficient conditions for the form 
of parametric representation of rational circular, in particular 
of rational isotropic curves, and their generation by rational 
transformations in a complex plane. As an application the 
complete representation of all rational circular cubics, and 
all rational isotropic quartics will be given. 

2. Parametric Representation of Rational Circular and Isotropic 
Curves. 

Let 

w x H(t) ' y "" H(t) ' 

in which F, G, H are polynomials in t, with real coefficients, 
without a common factor, represent a rational curve. To 
real values of t correspond real values of x and y, or real points 
on the curve. The curve passes once through each of the 
isotropic points, when for a complex value U of t 

(5) lim (x) = 00, lim (y) = 00, Km ( - ) = + i, 

and, as a consequence, also for the conjugate value U 

(6) lim (x) = 00, lim (y) = 00, lim ( - I = — i. 

The algebraic sign of i might, of course, be reversed. From 
this it follows that a necessary condition that the curve (4) 
pass through the isotropic points is that H(f) = 0 has complex 
roots which are not common to F(t) = 0 and Gif) = 0. But 

* E. Pascal, Repertorium der höhern Mathematik, vol. 2 (first half), 
pp. 436-438 (1910). 
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complex roots of H(t) = 0 occur in conjugate pairs. Let 
h, h; h,\\ • • • ; tk, h be complex roots of this equation, so 
that H(t) may be written in the form 

(7) H(t) = [(* - h)(t _ f2) . . . (* - tk)][(t - ti)(t - h) 

. . . ( < - h)Mt), 
where *(£) is a polynomial in t, which contains none of the 
other factors of H(t). The two brackets in (7) may be written 
in the form 

** + arf*-1 + a2t
k~2 M V ah, 

and 
tk + ait*-1 + a2t

k~2 + Yah, 
and are clearly conjugate expressions, so that the first may 
be written in the form r — is, the second in the form r + is, 
in which r and s are in general polynomials in t of degree h. 
Hence, (7) has the form 

(8) H(t) = (r2 + s2mt). 

Incidentally we have proved 
THEOREM 1: If a polynomial equation with one unknown, 

and real coefficients, has only imaginary roots, then the poly-
nomial may be represented as the sum of the squares of two other 
polynomials. 

Suppose now that U satisfies the equation r — is = 0, 
and that for this value of t not both r and s vanish simul­
taneously. Then U, according to (5), defines an isotropic 
point of the curve, when U is a root of the equation 

(9) 6(t) - iF(t) = 0, 

or 
F(f) + iG(t) = 0. 

Consequently, when the roots ti, U, • • •, h of r — is = 0 
all define isotropic points, (9) may be written in the form 

(10) Fit) + %0(f) = (r - is)*(jt), 

where ty(t) is a polynomial in t, which in general, has complex 
coefficients, and which, when u and v denote polynomials in 
t with real coefficients, may be written in the form 

^(t) = u + iv. 
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u and v must not vanish identically simultaneously, and may 
reduce to constants. Now 

(r — is)(u + iv) = ru + sv + i{rv — su), 

so that from (10) 

(11) F(t) = ru + sv, 

G(t) = rv — sw. 
Hence 

THEOREM 2: E#0n/ rational circular curve may be para-
metrically represented in the form 

ru + sv 
x = 

(12) 
y = 

( r 2 + s 2 ) * ' 

rv — «m 
(r2 + s2)$' 

wiWtf a// letters on the right hand side stand for polynomials 
in t, such that r and s have no common roots. The polynomials 
ru + sv, rv — su, (r2 + s2)$, likewise have no common roots. 
When the degree of r2 + s2 is 2k, then the curve has each of the 
circular points as a k-fold point. Conversely, from (12) follows 
readily that every parametric representation as defined by (12) 
represents a circular curve with the circular points as k-fold 
points. 

When $ reduces to a constant, which we may place equal to 1, 
and the degrees of ru + sv and rv — su are equal to or less than 
that of r2 + s2, all infinite points of the curve are at the circular 
points, so that, in this case, the curve is isotropic, 

3. Isotropic Curves in a Complex Plane, 

From the parametric representation of an isotropic curve 

(13) 

we find 

(14) 

f ru + sv 
X "" r2+ s2> 

xf + iy' 

t rv — su 
y ~~ r2 + s2' 

u + iv 

If we replace i in u, v, r, s by the complex variable 

t = % = x + iy, 
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and put xf + iyf = z', (14) assumes the form 
(15) Z>=f(Z)/g(Z), 

in which ƒ (z) = u + iv, g(z) = r + is, and ƒ (2) is a polynomial 
whose degree is at most equal to that of g(z), and has no factor 
in common with g(z). Moreover g(z) has no real roots. Hence 

THEOREM 3: By the rational transformation 

z'=mig(z), 
in which f(z) and g(z) are polynomials as defined above, the real 
axis of the z-plane is transformed into a rational isotropic curve. 
On the other hand, when f(z) and g(z) are arbitrarily given in 
advance, subject to the conditions that the degree of f(z) is at most 
equal to that of g{z), that g{z) = 0 has no real roots, andf(z) = 0 
and g(z) = 0 have no common roots, then (15) always defines an 
isotropic curve. 

The proof of the second part of the theorem follows easily 
by deriving equations (14) and (13) from (15) in the reversed 
order. 

Instead of separating in ƒ(z) and g(z) the terms with real 
coefficients from those with complex coefficients, as under­
stood in (14), we can also separate all real from all imaginary 
terms, when considering ƒ(z) and g(z) as polynomials in x and 
y. Thus, from (15) we get an expression for z' of the same 
form as (14), but in which u, v, r, s are now real polynomials 
in x and y, which satisfy the Riemann-Cauchy differential 
equations. Formulas (13), with the new meaning of u, v, 
r, s, represent the same isotropic curve as before, if we let 
y = 0, and if we let x = t assume all values of the real axis. 

When in (15) z describes the real axis, the cartesian equa­
tion of the corresponding isotropic curve described by zf is 
obtained in the following manner: For the real axis z = z; 
consequently, when 

ƒ(*) = zm+ a^™-1 + a2z
m-2 + ham, 

g(z) = b0z
n + hzn-1 + b2z

n~2 + V bn, 

with m ^ n, we have the conditional equations, 

z'(b0z
n + bizn~l + b2z

n~2 H Ybn) 
- (z™ + atf™"1 + a2z™~2 + • • • + am) = 0 

z'(bQzn + biz""1 + b2z
n-2 H h bn) 

- (zm + âiz™-1 + â2z
m-2 + 1- 5m) = 0. 



402 RATIONAL CIRCULAR AND ISOTROPIC CURVES. [ J u n e , 

The resultant of these two equations in z is a polynomial in 
z' and z', which, when set equal to zero, and on replacing z' by 
x' + iy', l' by x' — iy', reduces to the required equation of 
the isotropic curve. As both equations in (16) are of degree 
n, the degree of this curve will, in general, be 2n, which is 
also apparent from (13). This method of finding the curve 
described by z', when z describes the real axis, is valid for 
any rational transformation between z and z', and includes 
the generation of all rational circular curves. 

4. Rational Circular Cubics. 

As an example for this method, the cartesian equation of 
all rational circular cubics, with the origin as a singular point, 
will be derived from the corresponding rational transforma­
tion of the superposed complex plane 

(17) ; ' * + « + * 
(a + iflz + (7 + iS) ' 

where a, b, a, ft 7, 5 are real, and ah — fiy =t= 0. Equations 
(16) have now the form 

(18) z2 + [a - (a + i(3)z']z + b - (7 + i8)z' = 0, 

(19) z* + [a - (a - it3)z']z + b - (7 - ib)l' = 0. 

Eliminating z between (18) and (19), the resulting equation 
in the cartesian plane reduces to 

(ad - (3y)(x'2 + y")(Px' + ay') + (S2 - aj88 + b^)xr2 

(20) + (27S - aaÔ - a/37 + 2bap)x'y' 

+ (S2 - aay + ba2)y'2 = 0. 

This may represent any rational circular cubic, with the 
singular point at the origin, by choosing a, b, a, /3, 7, S properly. 

5. Rational Bicircular Quartics. 

Instead of treating quartics in the same manner as circular 
cubics, the reversed order will here be followed. The problem 
now is, to find the rational transformation in the complex 
plane, when the equation of the curve is given. The equation 
of any bicircular rational quartic, with the origin as a singular 
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point, may be written in the form 

(21) (xf2 + y12)2 + (ax' + f$y') (x'2 + y'2) 

— (p2 + ap)x'2 + bx'y' + cy'2 = 0, 

in which p is the distance from the origin of one of the four 
points of intersection of the quartic with the #'-axis. 

The circle 

(22) x'2 + y'2 - pz' - 2tyf = 0, 

through this point and the origin, cuts the quartic in only one 
variable point, corresponding to the parameter t. The coordi­
nates of (21) can therefore be expressed rationally in terms of 
t, by solving (21) and (22) simultaneously. The result is 

m , , p(4^+2ffl+c)2-2^(4^+2^+/3p+&)(^2+2ffl+c) 
(Z6) X (At2 + 2j8* + c)2 + (Apt + 2at + pp + b)2 ' 

2t(Apt+2at+(3p+b)2 

m ) , -p(At2+2(3t+c)(Apt+2at+t3p+b) 
y (At2 + 2pt + c)2 + (Apt + 2at + pp + b)2 

If we put 4*2 + 2/3* + c = r, Apt +2at+ pp + b = s, (23) 
and (24) may be written in the form 

(25) x 

(26) y' 

r2 + s2' 

— su 
r2 + *2> 

which is in agreement with the general result contained in 
(13), in which v = 0. Hence 

u 
r + is 

or, putting t = z, 

/97>i / = - A(a + p)z2 - 2bz + cp 
V<) z 4Z2 + [2jg + i(4p + 2a)]z + i((3p + b) 

is the required transformation, which transforms the real 
axis into the given rational bicircular quartic. 
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For example, Bernoulli's lemniscate 

(28) (x'2 + y'2)2 - 2a\xf2 - y'2) 

is obtained by the transformation 

cW2(s 2 - l ) 
(29) z2 - 2iz - 1 -

6. Transformation of a General Algebraic Curve in the z-Plane. 

Instead of restricting ourselves to the rational transforma­
tion of the real axis in the s-plane, we may ask the question, 
what effect the transformation (13) has upon an algebraic 
curve C of the order ix and of deficiency p, when u, v, r, s 
are obtained as polynomials of x and y from the rational 
transformation (15), in which the degree of g(z) is n, that of 
f(z) m, with m ^ n. When C does not pass through the 
common intersections of the curves r = 0 and s = 0, C will 
intersect the curve r2 + s2 = 0 in 2/m imaginary points which 
by (13) are transformed into the circular points at infinity. 
Each circular point is therefore a /m-fold point of the trans­
formed curve C'. Now to a straight line V in the s'-plane 
corresponds in the s-plane a curve I of order 2n. This curve 
I cuts C in 2/xn points, which, conversely, are transformed into 
the 2fin intersections of V with C". The order of C' is there­
fore 2fxnf and as the circular points absorb all 2/m infinite 
points of C', this curve will be an isotropic curve. According 
to Clebsch,* the deficiency of C' is the same as that of C, so 
that a rational curve C is transformed into a rational isotropic 
curve C'. Evidently nothing in the generality of representa­
tion of rational circular and isotropic curves is lost by taking 
in place of a general curve C, the real axis. It is therefore 
not necessary, for our purpose, and in this place, to give 
further details of the relation between 0 and C". 

* Vorlesungen über Geometrie, vol. 1, pp. 661-674 (1876). 


