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25m. The system of neighborhoods SSm for fixed m covers O 
and may be replaced by a finite subsystem, 

8Sml, 23m2, . . . SSwfc; 

such that each point of O is interior to some class 33mfc and 
each class S5mfc is a neighborhood of a point Qmk of the class 
O . Let © be the class of all points Qmk. Since every point P 
of O is interior to some set SBmfc, it follows from condition (4) 
that Qmk is contained in the neighborhood 8Sm of P. There­
fore P is a limiting point of the class (§. 
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This article was in type before the writer learned of the 
existence of an article by Fréchet (Bulletin de la Société mathé­
matique de France, volume 35, 1917), in which it is shown 
that the closure of derived classes is a consequence of the 
Heine-Borel property in the case of a general system 8. 
Theorem 3 of the present paper is a generalization of this result. 
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INTEGRALS AROUND GENERAL BOUNDARIES. 

BY PROFESSOR P. J. DANIELL. 

THE concept of a boundary integral has been extended to 
curves of the type x = x(t), y = y(t), where x(t), y(t) are abso­
lutely continuous functions of a parameter t. In this case the 
curves are more or less simple and have tangents "nearly 
everywhere." In applications to physics however the boun­
dary must be considered rather as a boundary of a set (in the 
sense of the theory of point sets). The boundary will be, in 
general, a collection of points without definite tangents at all. 
This paper sets out a method by which such boundary integrals 
can be defined under certain restrictions placed on the two 
integrand functions u, v. The method depends on the con­
cept of absolutely additive functions of sets.* The writer 
believes that these restrictions could be lightened and that 
there is a wide field here for further investigation. 

* J. Radon, Wiener Sitzungsberichte,vol, 122 (1913). p. 1295. W, H. 
Ycung, Proceedings London Math, Society, vol. 13 (1914;, p. 109. 
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Statement of Problem.—Given any set E measurable Borel, 
and its boundary B(E), contained in a closed fundamental 
interval J (0 ^ x ^ 1, 0 ^ y <* 1) ; given also two functions 
u(x, y), v(x, y) summable in the interval J ; to define 

J' udx -\- vdy. 
B(E) 

Note.—The boundary integral is taken in such a sense that 
on a rectangle for the side with the lesser value of y the integral 
is taken in the direction of x increasing. As the axes are 
usually drawn this corresponds to a counter-clockwise sense. 

Definitions and Restrictions.— 
R 1. Let the total variation of u(x, y), varying y, be \(x), 

where X(#) is finite nearly everywhere in x and sum­
mable in (0 ^ x ^ 1). 

R 2. Let the total variation of u{x, y), varying x, be ju(y), 
where ix(y) is finite nearly everywhere in y and sum­
mable in (0 5* y 5* 1). 

We shall consider in the first place rectangles r with sides 
parallel to the axes. Then 

I udx + vdy = I da(x, y) 
/J5(r) 

can be proved to be an absolutely additive function of rec­
tangles r, and we may define 

If da(x, y) is an absolutely additive function of rectangles 

I udx + vdy = I da(x, y). 
JB(E) J JE 

is an absolutely additive functi 

we can by Radon's method define I da(x, y) uniquely for any 
JE 

set E measurable Borel contained in J. All that is needed 
then is to prove that I udx + vdy is an absolutely additive 

JB(V) 

function of rectangles r and to define 

a(x, y) = I ud% + vdrj, 
JB{V') 

where r' is the rectangle (0 < £ < x, 0 < rj < y). 
Proof. By üi, the total variation of u(x, y) in (0 ^ y 5Ï 1) 
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is Ate). Denote the total variation in (0 ^ rj ^ y) by Ate) 
6(x, y) when Ate) is finite. Ate) is non-negative, 0(x, y) is 
non-negative and a non-decreasing function of y taking the 
value 0 when y = 0, and 1 when y = 1. In particular it is a 
limited measurable function of x. Define 

%jf 

<ii(x, y) = j \(x)6(x, y)dx. 

dai(x, y) = (Ti(a;i, yi) + alfa, 2/2) — 0"itei, 2/2) — 0 (̂0:2,2/1) 

\(x)dx[d(x, 2/2) — 0te, 2/1)] 

is a finite non-negative additive function of rectangles. Then 
for any set E measurable Borel 

I dcrite, y) is defined and ^ I dai(x, y) or Si. 
«7̂  J j 

By Ei, 

l ^ t e , 2/1) - **te, 2/2) I ̂  Xte)[öte, 2/2) - öte, 2/1)]. 

wte, y) is summable in te, y) or is summable in x for nearly all 
values of y. Let 2/0 be one of the values for which it is sum­
mable. Then 

\u(x, y) I ^ \u(x, 2/0) I + Ate) I [0(x, y) - d(x, 2/0)] | 

or u(x, y) is summable in x for all values of y. 

I udx = I [u(x, 2/1) — u(x, y2)]dx 

^ r*X(aj)[Ö(ar, y») - 6(z, yi)] 

or 

rfo-ite, 2/). 
*Jr 

Hence for any set X) U of non-overlapping rectangles 

n \ c \ r 
] £ I wfo ^ I d<rite, 2/) 
i=l j J Bird I ^ S l n 
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Therefore 
00 ƒ» 

udx 
00 /» 

ABW 

is absolutely convergent. 

Moreover I w<fe is an additive function of rectangles r, for 

if two or more rectangles have some parts of their boundaries in 
common (but do not overlap), the integrals along these parts 
being taken in opposite directions will annul each other. 

If we define 

&i(x> y) ~ I udx, rf = (0 to x, 0 to y), 
Jj3(r') 

I udx = I dai(x, y) 
JB(T) Jr 

defines an absolutely additive function of rectangles. Sim­
ilarly for 

I vdy = I da2(x, y) 
JjB(r) Jr 

and therefore also for 

J' udx + vdy = I da(x, y), 
B(r) Jr 

where a(x, y) = <xi(#, 2/) + a2(x, y). 
This was to be proved, and it follows that we can define 

I udx + vdy = I da(x, y). 
JB{E) JE 

More generally, the same method could be used if it can be 

proved that I udx + vdy is an absolutely additive function 
JB(V) 

of rectangles; the difficulty is to state the required conditions 
as conditions on u and v directly. That is the reason for the 
introduction of JRi, RL, which are sufficient but probably not 
necessary. 
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