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INVOLUTIONS ON THE RATIONAL CUBIC. 

BY PROFESSOR R. M. W I N G E R . 

(Read before the San Francisco Section of the American Mathematical 
Society October 27, 1917.) 

Introduction. 

1. T H E general subject of involution as applied to rational 
curves has been widely studied, notably by Weyr, Stahl, Coble 
and many Italian writers. I t is the purpose of this paper to 
discuss certain involutions on the rational cubic, Rs. 

If Si denote the elementary symmetric functions of coordi­
nates xi, x2, . . ., xn oî n points (elements in the binary do­
main), the most general involution of order n, Jn-i.i* i- e., one 
in which n— 1 points of a set determine the remaining one, will 
be defined by 

(1) a0sn + aisn-i + (hSn-2 + • • • + an-isi + an = 0. 

The involution is thus made up of all sets of n points apolar to 
& fixed set, the w-fold points of the involution, given by 

a0x
n + ( j W"-1 + ( £ W"-2 + • • • 

<2) , ( n \ 

+ I n _ 1 ) an~lX + a n = 0. 
The following alternative and equivalent definition is service­
able when the n points of a set are represented implicitly by 
an equation: An In-i, I is an (n — 1)-parameter family of 
binary forms of order n 

(3) JO + hfl +hf2+ • • • + ^n-l/n-l. 

More generally, if n — r points of a set suffice to determine the 
remaining r, Xi must satisfy r equations of the type (1) and (3) 
reduces to an (n — r) -parameter family. The corresponding 
involution is denoted by In-r, r. 

2. Choosing for triangle of reference the nodal tangents 
and the line of flexes, the equation of the curve may be written 
in the canonical form 

(4) X! = df, x2 = St, x3 = f + 1. 
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The peculiar adaptability of the language of involution to 
describe the properties of the curve will appear from a few 
examples. Thus the condition that three points be on a line is 

(5) S3 + 1 = 0, 

i. e., (5) defines the involution which comprises all line sections. 
If the line is tangent at r, meeting again at t, the equation be­
comes 
(6) f H + 1 = 0. 

Again (from (6) ) the parameters of contacts of tangents from 
an arbitrary point of R3 belong to the quadratic involution Si = 0 
whose double points are the nodal parameters.* 

Finally, lines joining pairs of points in a quadratic involution 
envelop a conic perspective to i£3.f 

The line tfifc is 

(7) Ois2 — l)^i + Oi — s2
2)x2 — 3s2£3 = 0. 

If the double points of the involution are given by 

(8) at? + 2bt + c = 0, 

the equations of the perspective conies in lines, found by requir­
ing that (8) be apolar to (7) considered as a quadratic in fe, are 

(9) u\ = bt2 — ct + a, U2 = ct2 r-at+b, w3 = — Zbt. 

These conies have each three contacts with Rz which belong to an 
h,i, $z = 1, whose triple points are the sextactic points.t 

Among the tri-tangent conies must be counted the degenerate 
conies consisting of two tangents from a point of the curve. 
Thus the point t and the contacts of tangents from t are a set 
apolar to the sextactic points. The equation of any composite 
conic, e. g., the pair of tangents from t\, is found at once by 
taking the discriminant of (7) considered as a quadratic in fe. 

Since the triple points are a set in the involution, there is 
one conic touching at the sextactic points. This is a remark­
able conic which we shall call N. I t is obtained by requiring 

*This theorem, discovered independently, is referred to by Weyr, 
Wiener Berichte, vol. 79 (1879), p. 429 ff., as known. 

t Coble, "Symmetric binary forms and involutions," Amer. Jour. Math., 
vol. 32, p. 358. 

{ The equations of the three sextactic conies are given by (9) when 
b = 1; a = c = - 3 , - 3co, - 3co2, (co3 = 1). 
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that the double points (8) of the quadratic involution be the 
nodal parameters. In this case a = c = 0 and the conic is 

U\ = t2, Ufi = 1, us — — St, or Us2 — 9uiU% = 0, 
(10) 

xi = 3, X2 — St2, xz = 2t, or 9#3
2 — 4 îa:2 = 0. 

Combining the foregoing discussion with a theorem stated at 
the beginning of this section, we may say: The lines joining 
pairs of contacts of tangents from the points of Rs envelop a conic 
N which touches the nodal tangents (where they meet the line of 
flexes) and has contacts with RB at the sextactic points. 

3. As an example of an Ii 2 may be mentioned the involution 
set up by the pencil of lines (ux) + X (vx) = 0. The lines 
will cut out a pencil, i. e., an Ii, 2 of binary cubics, say u + \v. 
The contacts of tangents from the center of the pencil which 
are the double points of the involution are given by the 
Jacobian J of u and v.* 

Are there any lines u whose cubi-covariant points are also 
line sections u"i If so, these lines may be taken as the base 
lines of a pencil and the involution becomes u + \u'. That is, 
from the intersection P of u and uf can be drawn not four 
tangents but a pair of repeated tangents. This can happen if 
and only if P is the intersection of two flex tangents. Hence if 
u is a line of a pencil with center P, its cubi-covariant points 
lie on a line u' of the same pencil. In other words the locus of 
lines u whose cubi-covariant points lie on a line uf consists of the 
vertices of the triangle of flex tangents, while u' envelops the same 
points. 

Lines u and u' in any pencil P belong to a quadratic involu­
tion of lines whose double lines are the two flex tangents 
meeting at P. 

The points P are (1, 1, 1), (1, co, co2), (1, co2, co) and are there­
fore fully perspective with the reference triangle. 

Other Contact Conies. 
4. To find the intersections of R* with a general conic we 

substitute equations (4) in the trilinear equation of the conic. 
The result will be a sextic in t, in which obviously the coefficient 
of the highest power is the same as the constant term. Hence 
the necessary and sufficient condition that six points lie on a 
conic is that their parameters satisfy the equation 

* Salmon, Higher Algebra, fourth edition, p. 162. 
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(11) *6 = 1, 

or that they belong to a sextic involution I5. i. 
We shall get contacts when two or more t's come together.* 

Passing to the extreme case, suppose all six f s coincide. Then 

(12) f - 1 = (f + 1) (fi* - 1) - 0, 

which includes the flexes among the sextactic points. The 
conies then degenerate of course into the flex tangents re­
peated. 

5. Next suppose five points coincide at r . Then 

(13) TH - 1 = 0, 

which says that at each point r of Rz there is a conic with 
5-point contact, f but through a given point t five such conies 
pass. Moreover the product s5 of the five quintactic param­
eters satisfies the equation s5 = l/t (from (13) ). Hence, by 
(11), the quintactic points of the five quintactic conies which pass-
through t (simply) lie on a conic with t. 

6. Let four intersections coincide at r and two at t, or 

(14) TH2 = 1. 

There would seem to be four conies with simple contact at t 
and with 4-point contact elsewhere. But among these are 
the tangent lines from t each counted twice and therefore only 
two proper conies with contacts satisfying the equation 

(15) TH = 1. 

Or the quartactic points r of conies touching at t are given by 

(16) r2 - Ijt = 0. 

Hence they lie on a line with t. Moreover they are harmonic 
with the contacts of tangents from t. They are likewise har­
monic with the nodal parameters; hence the line joining them 
is a line of conic N and their tangents meet again on the curve, 
viz., at — t. Again - u s on a line with the contacts of tan­
gents from t. These statements apply equally well to — t. 

* Contact here simply means coincident intersections and will include 
improper contact as well as ordinary tangency, i. e., coincidence of con­
secutive parameters. 

t We shall call this a quintactic point and the conic a quintactic conic, 
adopting similar terms for the other cases. 
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We thus have a striking configuration which may be described 
as follows: 

From a point (— 1/f) of R? draw the two tangents t and —• t 
and from each of these points the pair of tangents. The two 
pairs of contacts of tangents from t and — t are harmonic and 
form therefore with the nodal parameters three mutually harmonic 
pairs. The line joining contacts of tangents from t passes 
through — t and is therefore a tangent from — tto conic N, and 
vice versa. The other tangent to N from either point is the junc­
tion of the two. At either point (t or — t) two conies touch which 
have quartactic points at contacts of tangents from the other. 

7. If now the six intersections coincide in two triples, the 
equation becomes 

(17) frs = 1, or r3 - 1/f = 0. 

Hence at each point t of Rs there are three osculating conies 
which osculate the curve again at points I ft, co/t, co2/t respec­
tively. At each of these points there are three osculating 
conies which osculate again, one each at t, cot and to2t. We 
have thus a configuration of six points and nine conies. If the 
points are arranged in two rows, as 

t cot ccH 
1/t co/t œ2/t 

then at each point in either row three conies osculate, each of which 
osculates again at one point of the other row. The six points 
themselves lie on a tenth conic whose equation is 

9tW - (Z3 + l )2 XM = 0. 

Moreover the two triangles as written are harmonically perspective 
from each of the flexes. 

8. Finally we obtain tri-tangent conies when the points of 
(11) coincide in pairs. The contacts then satisfy the equation 

*32 = k2 tf h2 = 1. 

But if the right side is — 1, the conic is any line section re­
peated. The contacts of all tri-tangent conies (except re­
peated lines) therefore belong to the h,u^— 1. Since this is 
the same involution as that defined by the sextactic points we 
infer that the perspective conies (9) Art. 2 embrace all tri-
tangent conies. 
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Hyperosculating Curves. 

9. The foregoing method can be applied to the study of 
other contact curves of the R3. We shall restrict our atten­
tion, however, to those which have complete intersection at a 
point. Such curves of order n will be called hyperosculating 
curves, designated by Hn. The contacts, denoted by Psn, will 
be called hyperosculating points. The simplest of these curves 
are the flex tangents, of course, which taken n times must be 
reckoned among all Hn's- Similarly the sextactic conies 
counted n times will be included among the H%n§ of even 
degree, etc. 

If now the x's from (4) are substituted in a general ternary 
equation of degree n, there results a binary equation of degree 
Sn in t, wherein the coefficient of the highest power of t differs 
at most in sign from the constant term. Denoting by Ssn the 
product of the roots of this equation, we have as the condition 
that Sn points be the complete intersections of Rs and a curve 
of degree n 
(18) sZn = ( - 1)-. 

i. e., that they belong to an involution, /3n--i,i« 
Hence the contacts, Pzni of hyperosculating curves are given 

by 
(19) t3n = ( - 1)". 

10. There will be two cases according as n is odd or even. 
Case I. n odd. When n = 1 we have the points of inflexion. 

That is, there are 3 Hi s whose P^s lie on a line. 
When n = 3, (19) is 

(20) f + 1 = (*3 + 1) (*6 - f + 1). 

There are thus 9 Hz s whose P9 's are on a cubic. But three of 
these Pg's are the flexes, counted three times, and are therefore 
the complete intersections of a line and Rs. Hence there are 6 
proper Hz s whose contacts are on a conic. 

In general, n odd, the contacts of Hn$ are given by 

(21) t*n + 1 = 0. 

Here s3n = — 1. Hence there are Sn points at which Hn's, 
including degenerate cases, can be drawn. These points are 
the complete intersections of Rs and a Cn. This Cn, however, 
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is always composite, since it contains the line Ci of flexes. It 
may contain also other factors CJ{. at whose intersections can 
be drawn degenerate Hn's which are i?n//s of lower order re­
peated r times. 

If Cn = CiCkfik* • • • Cupn', it follows that there are 
3n' PznS at which "proper Hn's can be drawn and these points are 
the complete intersections of Rs and Cn>. For the lower values 
of n the Cn's are appended, from which can be inferred the 
number of P3n's at which proper Hn's can be drawn; e. g., 
there are 12 Pu s at which proper H$s can be drawn and these 
points are on a quartic CV 

p p p p p p p p p p P P P 
O3 — O1O2, O5 — O1O4, O7 — O1O6, O9 — O1O2C/6, 

^ ' p pp p pp p n n n n 
O n — O1O10, O13 — O1O12, O15 — O1U2O4O8. 

11. Case II. n even and equal to 2m. The hyperosculating 
points are now given by 

(23) fm - 1 = (fm - 1) (fm + 1). 

There are two cases according as m is odd or even. 
(a) When m is odd the second factor of (23) gives points 

Pem which are Pzm taken twice; while the other factor 

(24) *** - 1 = (t3 - 1) (tSm~s + fm~6 + . . . + f + 1). 

The first factor of (24) corresponds to the sextactic points 
which are to be taken m times. The other factor indicates that 
there are (3m — 3) PsnS which lie on a Cmr-i* 

(b) When m is even the first factor of (23) names contacts 
of (Hm's)2. The other factor says that there are 3m P^s which 
lie on a Cm. These curves Cm-\ and Cm may or may not be 
composite, but as above we can infer that the points at which 
proper Hn's can be drawn are the complete intersections of 
Rs and a Cmu 

In particular if n is a power of 2, say n = 2a, (19) becomes 

(25) (f'2a - 1) = (P'2"-1 - 1) (f*2*-1 + 1) = 0, 

the first factor of which names contacts of curves H2a~i re­
peated, except when a = 1. The second factor gives proper 
P3.2a's which by (18) lie on a C2«-i. Moreover in virtue of 
relation (6) these P3.2«'s are contacts of tangents from proper 
P3.2aVs. We have thus the following chain theorem: The 
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3 sextactic points are contacts of tangents from the flexes P3. 
The 6 contacts of tangents from the sextactic points are the points 
Pi2. The 12 contacts of tangents from P i2 in turn are the points 
P24, and so on ad infinitum. 

UNIVERSITY OF OREGON. 

RELATED INVARIANTS OF TWO RATIONAL 
SEXTICS. 

BY PROFESSOR J . E . E O W E . 

(Read before the American Mathematical Society September 4, 1918.) 

LET the parametric equations of the P3
6, the rational curve 

of order six in three dimensions, be 

Xi = S6** = a ƒ + 6 6 / + 15c/ + 20d{f + löetf + 
( 1 ) m +9i (i = 1, 2, 3, 4), 

and let the parametric equations of the R£, the rational plane 
curve of order six, be of the form 

Xl = a? = a + bt + d* + dt* + et4 + ftf + gfi, 

x2 = /3,6 = a' + Vt + c't2 + d't* + e'f + f f + g'fi, 

xz = Tf
6 = a" + b"t + c"t2 + d"ts + e"tf+f"t5 + g"f. 

It is well known that all plane sections of the i23
6 are apolar 

to a doubly infinite system of binary sextics, and that all line 
sections of the Rf are apolar to a triply infinite system of 
binary sextics. We shall let the four binary sextics ô^6 of (1) 
be four linearly independent sextics of the apolar system of 
the Rf, and the af, Pt6, 7t6 of (2) be three linearly independent 
sextics of the apolar system of the i?3

6. Our purpose is to point 
out briefly the relation between the invariants of the R£ and 
the invariants* of the i^6-

By means of the twelve equations 

* This relation must not be confused with the correspondence between 
invariants of the R*n and covariant surfaces of the Rzn. 


